Carbon Capture and Reliable Storage: The Scale of the Challenge

JEN WILCOX

CHEMICAL AND BIOLOGICAL ENGINEERING
COLORADO SCHOOL OF MINES

CALTECH - PLAN B: ENGINEERING A COOLER EARTH

SATURDAY DECEMBER 9TH, 2017

Gigatonne Impacts Are Crucial

Reference: Fuss et al., Betting on Negative Emissions, Nature, 2014

Appreciating the Scale of CO₂ Emissions

Fossil Fuels Represent ~ 90% of Global Emissions Coal (40%), Oil (30%), Natural Gas (20%)

Annual emissions (tCO₂) per capita:

- US ~ 15.6
- China ~ 6.5
- India ~ 1.5

Appreciating the Scale of CO₂ Emissions

Annual emissions (tCO₂) per capita:

- US ~ 15.6
- China ~ 6.5
- India ~ 1.5

- 1. Consider the separation process, adsorption
- 2. We choose to use an ideal sorbent with today's maximum capacity
- 3. To capture our per capita emissions requires 150 tonnes of sorbent!

Energetics of Separation Scale with Dilution

The Majority of the CO₂ Sources are Moderate to Extremely Dilute

Category	% CO ₂ (vol)	Example
High Pressure	varies	Gas Wells (e.g., Sleipner) Synthesis Gas (e.g., IGCC)
High Purity	90-100%	Ethanol Plants Ammonia
Dilute to Moderate	10-15%	Coal-Fired Power Plants → ~ 40% of emissions
Very Dilute	3-7%	Natural Gas Boilers Gas Turbines ~ 20% of emissions
Extremely Dilute	0.04 – 1%	transport sector Ambient Air ————— ~ 25% of emissions Submarines/ Space Craft

Minimum Work for Separation

combined first and second laws

$$W_{\min} = RT \Big[n_B^{CO_2} \ln(y_B^{CO_2}) + n_B^{B-CO_2} \ln(y_B^{B-CO_2}) \Big] + RT \Big[n_C^{CO_2} \ln(y_C^{CO_2}) + n_C^{C-CO_2} \ln(y_C^{C-CO_2}) \Big]$$

$$-RT \Big[n_A^{CO_2} \ln(y_A^{CO_2}) + n_A^{A-CO_2} \ln(y_A^{A-CO_2}) \Big]$$

Reference: Wilcox, Carbon Capture, Springer, 2012

Capturing CO₂ From Air is Very Difficult, but technically feasible

- Energy scales with dilution!
- Density changes with purity $95\%CO_2 + 5\%N_2 = 681 \text{ kg/m}^3$ $80\%CO_2 + 20\%N_2 = 343 \text{ kg/m}$
- ~ 0.5 kJ/mol CO₂ additional compression energy!

Industrial Emissions May be Low-Hanging Fruit and Scale with Utilization

Sherwood Estimates for Separation From Industry

TABLE 2. Minimum work and Sherwood-derived capture cost estimations for various industries.

Source	CO ₂ Content (mol %) ^a	Ref.	Min. Work (kJ/mol CO ₂ Captured) ^b	Cost (US\$/t CO ₂ Captured)	Literature Estimates (2016 US\$/t CO ₂ Captured)	Ref.
Aluminum	4 – 10	6, 12, 13	8.2 - 10.8	45.8 – 65.6	$68.2^{c,d} - 76.3^{c,e}$	14
Ammonia	30 – 99.9+	15	0.0 - 5.0	$0.0^f - 29.0$	$21.2^{c,g}$	16
Carbonates	20	17	6.2	36.0		
Cement	14 – 33	18, 19	4.7 - 7.3	28.1 – 39.2	$57.3^{c,g}$, $68.4^{c,g}$, $54.8^h - 95.3^i$,	16, 20, 21
Ethanol	99.9+	22	0.0	0.0^f		
Ferroalloys	8 - 10	23-25	8.3 - 8.9	46.3 - 50.6		
Glass	7 - 12	23, 26	7.7 - 9.3	44.4 – 54.9		
Iron and Steel	20 - 27	18, 27	5.5 - 6.2	31.4 - 34.2	$21.7^{j} - 24.4^{j}$	16, 28, 29
					$32.6^k - 44.0^k, 57.3^{c,g}$	
Lead	15	30	7.1	40.5		
Lime	20	23	6.2	34.4		
Magnesium	15	23, 31	7.1	40.7		
Petrochemicals	30 – 99.9+	27, 32	0.0 - 5.0	$0.0^f - 28.6$		
Pulp and Paper	8	33	8.9	48.0	$31.1^{l} - 35.0^{l}$	34
Refining	3 - 20	35, 36	6.2 - 11.7	33.5 - 70.4		
Silicon Carbide	8	37	8.9	51.4		
Soda Ash	36 - 40	38	4.0 - 4.4	25.6 - 26.7		
TiO_2	13	39	7.5	41.2		
Zinc	15	30, 40	7.1	40.2		
Natural Gas	3 – 5	9, 32	10.3 - 11.7	57.2 - 69.9		
Petroleum	3 - 8	9, 18	8.9 - 11.7	47.0 - 69.0		
Coal	10 - 15	32, 41, 42	7.1 - 8.3	36.5 - 42.7		
					l	

^a Range in composition due to different processes or different capture points within the same process. When not directly reported, values were estimated from a complete mass balance assuming NG fuel and 15% excess air; ^b calculated assuming 99.5% purity and 90% capture, Ref. ⁹; ^c includes cost of compression; ^d calculated at 10% CO₂ purity; ^e calculated at 4% CO₂ purity; ^f for near pure streams, separation costs are considered in the compression and dehydration stage; ^g includes costs for transport and storage; ^h oxycombustion; ^l post-combustion MEA; ^f selexol capture from the blast furnace; ^k post-combustion capture from blast furnace; ^l capture using pre-combustion shift technology

Reference: Bains, Psarras, Wilcox, Progress in Energy and Combustion Science, 2017

Rethinking Industry-Based Emissions

Example – US Steel Corporation plant in Gary, Indiana

Reference: Bains, Psarras, Wilcox, Progress in Energy and Combustion Science, 2017

Sources vs Sinks

Reference: Psarras, Comello, Wilcox, Environmental Science and Technology, 2017

Sinks vs Sources

0 125 250

500

Plastics/Polymers Manufacturing

Soda Bicarbonate Manufacturing

Industrial Gas Manufacturing

Beverage Carbonation

Enhanced Oil Recovery

Gum and Wood Chemicals

Urea Manufacturing

CO, Sinks

Fire Proo ng Refrigeration

Using CO₂ as a Chemical Feedstock May have a Minor Impact on Emissions

...but Several Opportunities Exist on a Gt-Scale

Chemical Industry Represents 3% of Emissions Globally

Products that Have an Impact on a Gt-Scale

- Steel market in 2018 is predicted to be ~ 1.55 Gt
- Construction aggregates ~ 53 Gt in 2017, up from 37 Gt in 2010, in terms of concrete, this represents building a sidewalk around the equator 5,000 times! or ~ 1,400 Three Gorges dams!

Grand Coulee Dam 21.3 Mt concrete

Three Gorges Dam 36.2 Mt concrete

Note: Concrete = cement + water + sand and gravel (aggregate) and cement industry \sim 4 Gt (2015) – rule of thumb is that 6-7x aggregate required; **Reference:** USGS

First and Foremost, Mitigation Efforts Must Increase by at least 100x

CCS Demonstration Projects

There are ~ 100 projects globally that are operating, have operated, or are under construction

- Scale: ~1 Mt CO₂/yr (compared to ~ 35 Gt CO₂/yr emitted)
- CO₂ Sink: Geologic formations coupled with enhanced oil recovery
- EOR CO₂ storage to date 560 Mt CO₂
- ARI Report EOR may provide a CO₂ market of up to 7.5 GtCO₂ bet/ 2016-2030 (value of ~ \$260B)

Reference: DOE-NETL Primer: CO₂ EOR, Jan 2017; IEA Technology Roadmap: CCS, 2013

Negative Emissions will be Rquired to Prevent 2 °C warming by 2100

Climate Models Include NETs

Parting Message

We need everything and we need it now e.g., fuel switching, CCS, renewables, negative emissions, etc.