

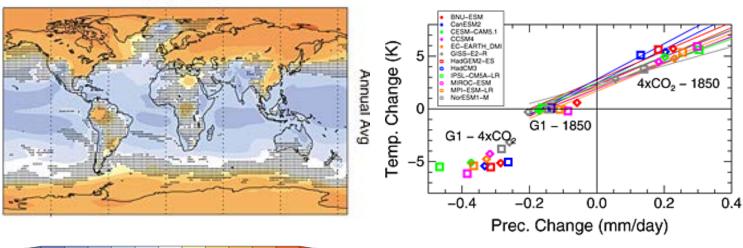
Viability and Desirability of Proposed Radiation Management Methods

Trude Storelvmo (Yale University)

Stratospheric aerosol injection (SAI)
= Brightening Earth by injecting sulfur (or
other aerosols) into the stratosphere
Marine Cloud Brightening (MCB) =
Brightening marine clouds by seeding them
with sea-spray or other soluble aerosols
Cirrus Cloud Thinning
(CCT) = Decreasing Earth's greenhouse
effect by reducing cirrus clouds

Yale

NOTE: There is broad climate model agreement that precipitation anomalies (relative to the preindustrial climate) are much larger in a world with strong CO_2 warming compared to one where CO_2 warming has been neutralized with SRM.

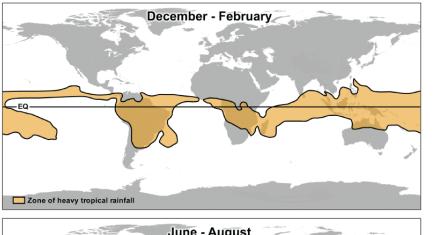

The side effects of albedo modification

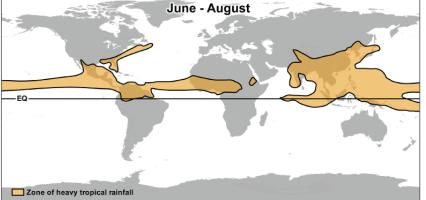
Yale

Too much cooling in the tropics, not enough at the poles

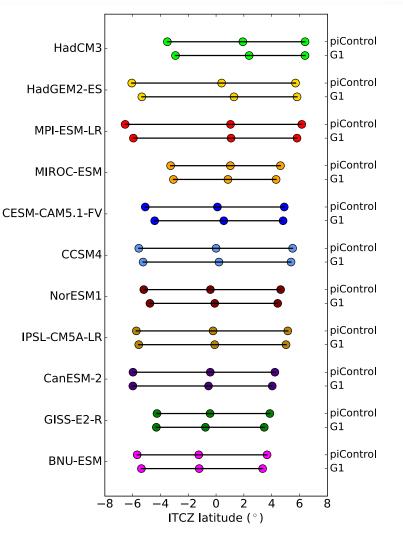
G1-piControl

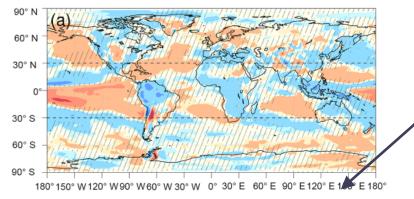
Overcompensation for CO₂ warming in the hydrological cycle

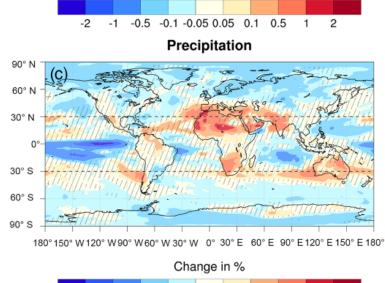

-3.2-1.6-0.8-0.4-0.2-0.1 0.1 0.2 0.4 0.8 1.6 3.2 Temperature (K)


Kravitz et al. (2013), based on GeoMIP simulations.

Tilmes et al. (2013), based on GeoMIP simulations.

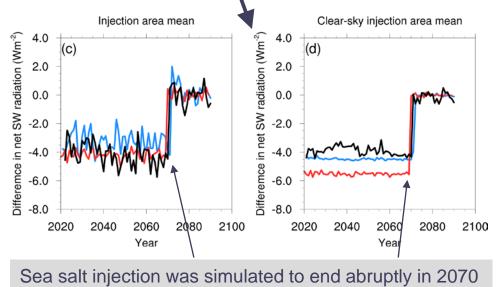

SAI impact on ITCZ migration


A robust finding across climate models is that the ITCZ seasonal migration contracts under SAI.


Smyth, Russotto & Storelvmo (2017)

Sea salt injection in marine boundary layer (MBL)

Omega-vertical velocity at 500 hPa



 Injecting sea salt into the MBL induces sinking motion & drying over ocean, and ascent & increased precipitation over land.

Yale

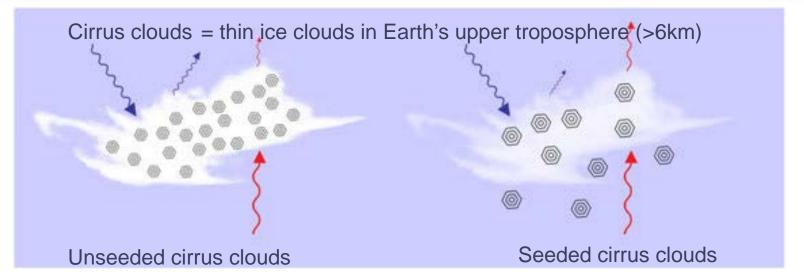
• Intriguingly, the direct (clear-sky) cooling effect dominated the overall cooling effect (!)

Ahlm et al. (2017), based on GeoMIP experiment conducted by 3 models

-30

-20

-10


-5

10

20 30

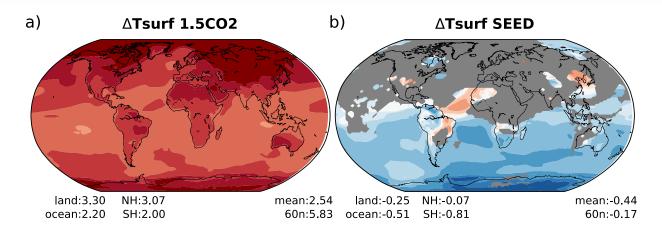
Cirrus Cloud Thinning (CCT)

Mitchell & Finnegan (2009): Cirrus cloud cover could be artificially reduced, by seeding cirrus with efficient ice nuclei (Bil₃ was the proposed material).

Cirrus cloud seeding has potential to cool climate

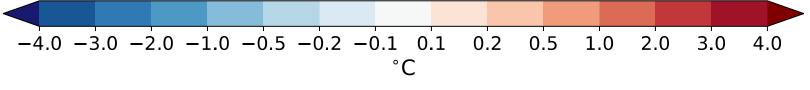
T. Storelvmo,¹ J. E. Kristjansson,² H. Muri,² M. Pfeffer,² D. Barahona,³ and A. Nenes⁴

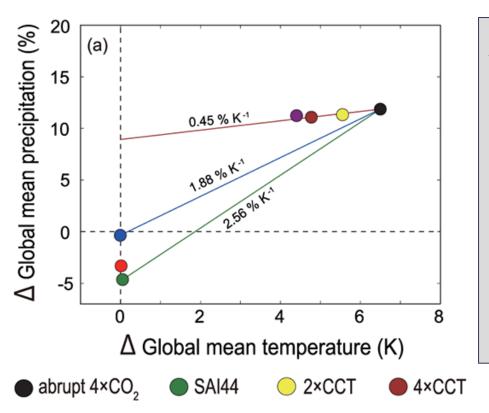
Received 16 October 2012; revised 18 December 2012; accepted 24 December 2012; published 15 January 2013.


Can cirrus cloud seeding be used for geoengineering?

Joyce E. Penner¹, Cheng Zhou¹, and Xiaohong Liu²

¹Department of Climate, and Space Sciences and Engineering, University of Michigan, Ann Arbor, Michigan, USA,
²Department of Atmospheric Sciences, University of Wyoming, Laramie, Wyoming, USA


Latest update on CCT


CESM: CCT yields a cooling of almost 3 K, overcompensating for $1.5xCO_2$ in the SH.

a) b) **∆Tsurf 1.5CO2 ∆Tsurf SEED ECHAM:** CCT yields a cooling of $\sim 0.6K$, leaving residual warming from 1.5xCO₂ (more in NH). land:1.65 mean:1.25 land:2.42 NH:2.12 mean:1.81 NH:1.47 SH:1.50 ocean:1.09 SH:1.04 60n:2.59 ocean:1.57 60n:3.79

Gasparini & Storelvmo (in prep.)

A combination of cirrus cloud thinning and stratospheric aerosol injection appears to be a promising way to simultaneously stabilize global mean temperature and precipitation.

8×CCT

SAI29+4×CCT

SAI38+1.5×CCT

Geophysical Research Letters

Zao et al. (2017)

Viability vs. desirability

Viability

- **SAI**: Cooling is virtually certain.
- MCB: Efficacy of cooling via cloud brightening uncertain. Clear-sky cooling as effective?
- **CCT:** Cooling effect uncertain (contingent on poorly understood ice microphysics).

Desirability

- **SAI:** shifts in ITCZ and contraction of its seasonal migration. Could SAI be designed to mitigate this (MacMartin et al., 2017)?
- MCB: Increased precipitation over land, less over ocean (is that good or bad?)
- CCT: Cooling w/out much precipitation reduction (again, good or bad?)

Open questions

Yale

- On viability: Are we currently addressing the key unknowns of SAI, MCB and CCT? If not, what studies are missing, and what can realistically be done at the current funding level? And have we reached the limit for how much we can learn from modeling?
- On desirability: Is a large deviation from pre-industrial (or present-day) climate bad, a priori? Some regions could potentially benefit from some residual warming, and likewise many regions would benefit from additional precipitation.

