GLOBAL

The Global Carbon project methane : activities & challenges

Presented by Philippe Bousquet, IPSL-LSCE

Contributions from : Marielle Saunois, Thibaud Thonat, Ben Poulter, Rob Jackson, Pep Canadell, and the GCP-CH₄ group

CARBON PROJECT

Workshop - Towards Addressing Major Gaps in the Global Methane Budget Caltech, Pasadena, 22nd of May 2017

GCP-CH₄ Objectives & realisations

• Objectives :

GLOBAL CARBON PROJECT

- Stimulate research and projects on the global to regional methane budget and its evolution since pre-industrial times
- Produce regular updates of the methane budget (~ every 2 years)
- Produce synthesis papers in peer-reviewed literature
- How ?
 - Constitution of a GCP-CH₄ group of scientists interested by the objectives,
 - Scientific exchanges during the year (teleconf, side events in conferences, ...)
- Who?
 - Any individual scientist, team, or thematic group working on the global to regional scales of the methane cycle, bottom-up/top-down, experimentalist/modeler/ inverser, ...
- Main realisations
 - Two budgets released in 2013 and 2016
 - Five papers published : Kirschke et al., 2013, Saunois et al., 2016ab, 2017, Poulter et al., 2017
 - Annual side-event meeting at AGU
 - A Grant from Moore foundation obtained for three years

Scientific contributors : Marielle Saunois France | Philippe Bousquet France | Ben Poulter USA | Anna Peregon France | Philippe Ciais France | Josep G. Canadell Australia | Edward J. Dlugokencky USA | Giuseppe Etiope Italy | David Bastviken Sweden | Sander Houweling The Netherlands | Greet Janssens-Maenhout Italy | Francesco N. Tubiello Italy | Simona Castaldi Italy | Robert B. Jackson USA | Mihai Alexe Italy | Vivek K. Arora Canada | David J. Beerling UK | Peter Bergamaschi Italy | Donald R. Blake USA | Gordon Brailsford New Zealand | Victor Brovkin Germany | Lori Bruhwiler USA | Kristofer Covey USA | Cyril Crevoisier France | Patrick Crill Sweden | Charles Curry Canada | Christian Frankenberg USA | Nicola Gedney UK | Lena Höglund-Isaksson Austria | Misa Ishizawa Japan | Akihiko Ito Japan | Fortunat Joos Switzerland | Heon-Sook Kim Japan | Thomas Kleinen Germany | Paul Krummel Australia | Jean-François Lamarque USA | Ray Langenfelds Australia | Robin Locatelli France | Toshinobu Machida Japan | Shamil Maksyutov Japan | Kyle C. McDonald USA | Julia Marshall Germany | Joe R. Melton Canada | Isamu Morino Japan | Simon O'Doherty UK | Frans-Jan W. Parmentier Sweden | Prabir K. Patra Japan | Changhui Peng Canada | Shushi Peng China | Glen P. Peters Norway | Isabelle Pison France | Catherine Prigent France | Ronald Prinn USA | Michel Ramonet France | William J. Riley USA | Makoto Saito Japan | Ronny Schroeder USA | Isobel J. Simpson USA | Renato Spahni Switzerland | Paul Steele Australia | Atsushi Takizawa Japan | Brett F. Thornton Sweden | Hangin Tian USA | Yasunori Tohjima Japan | Nicolas Viovy France | Apostolos Voulgarakis UK | Michiel van Weele The Netherlands | Guido van der Werf The Netherlands | Ray Weiss USA | Christine Wiedinmyer USA | David J. Wilton UK | Andy Wiltshire UK | Doug Worthy Canada | Debra B. Wunch Canada | Xiyan Xu USA | Yukio Yoshida Japan | Bowen Zhang USA | Zhen Zhang USA | Qiuan Zhu China

Data visualisation support at LSCE : Patrick Brockmann France | Cathy Nangini France

GLOBAL

Publications and data access

Contact : marielle.saunois@lsce.ipsl.fr

Budget paper : Saunois et al., 2016, ESSD

Earth Syst. Sci. Data, 8, 1–55, 2016 www.earth-syst-sci-data.net/8/1/2016/ doi:10.5194/essd-8-1-2016 @ Author(s) 2016. CC Attribution 3.0 License

CARBON PROJECT

GLOBAL

The global methane budget 2000–2012

Marielle Saunois¹, Philippe Bousquet¹, Ben Poulter², Anna Peregon¹, Philippe Ciais¹, Josep G. Canadell³, Edward J. Dlugokencky⁴, Giuseppe Etiope⁵, David Bastviken⁶, Sander Houweling^{7,8}, Greet Janssens-Maenhout⁹, Francesco N. Tubiello¹⁰, Simona Castaldi^{11,12,13}. Robert B. Jackson¹⁴, Mihai Alexe⁹, Vivek K. Arora¹⁵, David J. Beerling¹⁶, Peter Bergamaschi⁹, Donald R. Blake¹⁷, Gordon Brailsford¹⁸, Victor Brovkin¹⁹, Lori Bruhwiler⁴, Cyril Crevoisier²⁰, Patrick Crill²¹, Kristofer Covey²², Charles Curry²³, Christian Frankenberg²⁴, Nicola Gedney²⁵ Lena Höglund-Isaksson²⁶, Misa Ishizawa²⁷, Akihiko Ito²⁷, Fortunat Joos²⁸, Heon-Sook Kim²⁷, Thomas Kleinen¹⁹, Paul Krummel²⁹, Jean-François Lamarque³⁰, Ray Langenfelds²⁹, Robin Locatelli¹, Toshinobu Machida²⁷, Shamil Maksyutov²⁷, Kyle C. McDonald³¹, Julia Marshall³², Joe R. Melton³³ Isamu Morino²⁵, Vaishali Naik³⁴, Simon O'Doherty³⁵, Frans-Jan W. Parmentier³⁶, Prabir K. Patra³⁷ Changhui Peng³⁸, Shushi Peng¹, Glen P. Peters³⁹, Isabelle Pison¹, Catherine Prigent⁴⁰, Ronald Prinn⁴¹, Michel Ramonet¹, William J. Riley⁴², Makoto Saito²⁷, Monia Santini¹³, Ronny Schroeder^{31,43}, Isobel J. Simpson¹⁷, Renato Spahni²⁸, Paul Steele²⁹, Atsushi Takizawa⁴⁴, Brett F. Thornton²¹, Hanqin Tian⁴⁵, Yasunori Tohjima²⁷, Nicolas Viovy¹, Apostolos Voulgarakis⁴⁶, Michiel van Weele⁴⁷, Guido R. van der Werf⁴⁸, Ray Weiss⁴⁹, Christine Wiedinmyer³⁰, David J. Wilton¹⁶, Andy Wiltshire⁵⁰ Doug Worthy⁵¹, Debra Wunch⁵², Xiyan Xu⁴², Yukio Yoshida²⁷, Bowen Zhang⁴⁵, Zhen Zhang^{2,53}, and Oiuan Zhu⁵⁴

ERL editorial

IOP Publishing Environ. Res. Lett. 11 (2016) 120207

doi:10.1088/1748-9326/11/12/120207

Environmental Research Letters

The growing role of methane in anthropogenic climate change

OPEN ACCESS M Saunois¹, R B Jackson², P Bousquet¹, B Poulter³ and J G Canadell⁴ PUBLISHER 1 Laboratoire des Sciences du Climat et de l'Environnement, LSCE-IPSL (CEA-CNRS-UVSQ), Université Paris-Saclay, F-91191 Gif-sur 12 December 2016 Yvette, France Department of Earth System Science, Woods Institute for the Environment, and Precourt Institute for Energy, Stanford University. Original content from this Stanford, CA 94305-2210, USA work may be used under Institute on Ecosystems and Department of Ecology, Montana State University, Bozeman, MT 59717, USA the terms of the Creative Commons Attribution 3.0 Global Carbon Project, CSIRO Oceans and Atmosphere, Canberra, ACT 2601, Australia licence E-mail: marielle.saunois@lsce.ipsl.fr + Poulter et al., in review for ERL Any further distribution of this work must maintain attribution to the + Saunois et al.. 2017.

http://www.globalcarbonproject.org/methanebudget

Global Carbon Project WEBsite

Data access on CDIAC

http://cdiac.ornl.gov/GCP/methanebudget/2016/

Outreach on the Global carbon Atlas

Global Methane Budget

Open CH₄ source emission visualization

We present a new assessment of the global methane (CH₄) budget arising from both natural and human-induced emissions, and how CH₄ is destroyed i the atmosphere by chemical reactions and soil uptake. This assessement is a collaboration between research institutes in the Global Carbon Project.

Click here to see the interactive CH₄ source emission visualization

An ensemble of tools and data to estimate the global methane budget and its evolution

Bottom-up budget **Biogeochemistry** Emission **Atmospheric** Inverse models models & dataobservations inventories driven methods Top-down budget From Kirschke et Suite of different 8 Ensemble of 11 Ground-based Agriculture and al., (2013) Longatmospheric waste related wetland models, data from inversion models emissions, fossil following the term trends and observation decadal variability WETCHIMP (TM5-4DVAR (JRC fuel emissions networks (AGAGE, of the OH sink. & SRON), LMDZ-(EDGAR4.2, EPA, CSIRO, NOAA, MIOP, PYVAR-IIASA, FAO). UCI, LSCE, others). **ACCMIP CTMs** Model for LMDz, C-Trackerintercomparison. Fire emissions Satellite data CH₄, GELCA, ACTM, (SCIAMACHY, (GFED3 & 4s, emissions TM3, NIESTM). FINN, GFAS, FAO). GOSAT) **Biofuel estimates** Other sources Ensemble of 30 from literature inversions (diff.

GLOBAL

CARBON

PROJECT

GLOBAL CARBON Bottom-up modelling : ex. of wetlands

Surface and satellite data

Source : World Data Center for Greenhouse Gases, http://ds.data.jma.go.jp/gmd/wdcgg/cgi-bin/wdcgg/map_search.cgi

GLOBAL

CARBON PROJECT

Atmospheric observations

+ IASI (TIR) + TROPOMI (coming)

• Methane Budget 2003-2012 (released on December 12th)

• Methane emission changes

Global methane emissions 2003-2012 : top-down view

CARBON

PROJECT

observations

GLOBAL

http://www.globalcarbonproject.org/methanebudget

Inverse models

GLOBAL CARBON PROJECT

Global methane emissions 2003-2012 : bottom-up view

CARBON Regional Methane emissions (2003-2012)

 Largest emissions in Tropical South America, South-East Asia and China (50% of global emissions)

GLOBAL

- Dominance of wetland emissions in the tropics and boreal regions
- Dominance of agriculture & waste in India and China
- Balance between agriculture & waste and fossil fuels at midlatitudes

Inverse models

Source: Based on Saunois et al. 2016 (Fig 6, 7)

CARBON Regional Methane emissions (2003-2012)

 Largest emissions in Tropical South America, South-East Asia and China (50% of global emissions)

GLOBAL

- Dominance of wetland emissions in the tropics and boreal regions
- Dominance of agriculture & waste in India and China
- Balance between agriculture & waste and fossil fuels at midlatitudes

Emission

inventories

- Uncertain magnitude of wetland emissions in boreal regions between TD and BU
- Chinese emissions lower in TD than in BU, African emissions larger in TD than in BU

Biogeochemistry models & datadriven methods

Source: Based on Saunois et al. 2016 (Fig 6, 7) Inverse models

Wetland emissions (1980-2010)

Bottom-up budget

•	Watland mathana				
	omissions in Ta CU	Region	2000-2006	2007-2012	2012
	emissions in 1g CH ₄	Boreal			
	yr ¹ for 11 vegetation	Boreal N America (NABo)	25.1±11.3	26.1±11.8	27.1±12.5
	models and 12	Boreal Eurasia (EuBo)	11±5.3	11±5.2	10.7±5.2
	TRANSCOM regions	Europe (EURO)	5.7±2.5	5.9±2.6	6.1±2.6
•	The emissions are	Temperate			
	presented as	N America (NATe)	16.2±5.6	16.4 ± 5.7	17.6±5.9
	averaged over the	S America (SATe)	13.4 ± 3.6	12.1 ± 3.2	11.9 ± 3.4
	stabilization period	Eurasia (EUTe)	15.1±7.1	14.8 ± 7.2	14.9±7.4
	(2000-2006), the	Tropical			
	increasing period	S America (TrSA)	38.5±9.3	37.4±9.2	36.8±9.1
	(2007, 2012) and for	Asia (TrAs)	22.5±3.7	23.2±3.7	23.9±3.8
		Africa (TrAf)	8.4±1.9	8.0 ± 1.7	8.3±1.8
	2012.	Semi Arid			
•	The uncertainty range	N Africa (NAfr)	8.5±3.7	8.8±3.6	8.3±3.3
	is estimated as the	S Africa (SAfr)	9±1.9	9.2±2	9.2±1.8
	standard deviation of	Australia (AUST)	2.7 ± 1.5	2.7 ± 1.4	2.6±1.3
	the wetland CH_4	Global	184±21.1	183.5±23.1	185.7±23.2
	model ensemble				

Source: Poulter. et al., in revision

GLOBAL CARBON

(*n*=11).

PROJECT

Biogeochemistry models & datadriven methods Chinese methane emissions (1980-2010)

Downward revision by a recent regional inventory

- County-based inventory covering all anthropogenic emissions
- Total emissions consistent with EPA, smaller than EDGAR4.2, more consistent with EDGAR 4.3.2 (not shown)

Emission

inventories

• Largest discrepancies for rice, coal, waste waters, oil&gas

CARBON

PROJECT

GLOBAL

Bottom-up budget

2010

2010

2010

2010

GLOBAL CARBON Downward revision of oceanic emissions

- Based on oceanic local observations and data extrapolation, Eastern Siberian Arctic Shelves (ESAS) were supposed to emit large amount of methane : e.g. 8 to 17 Tg/yr in Shakhova et al., (2014)
- Two recent papers revised downward ESAS methane emissions :
 - Based on oceanic obsestvations, 2.9 Tg/yr in Thornton et al., 2016
 - Based on atmospheric observations, range 0-4.5 Tg/yr in Berchet et al., 2016
- Integrating these new results, reported total ocean emissions are lower and less uncertain :
 - in Kirschke et al., 2013 :

In Saunois et al., 2016 :

18 Tg/yr [2-40] 14 Tg/yr [5-25]

Sources : Berchet et al., 2016; Saunois et al., 2016

- Methane Budget 2003-2012 (released on December 12th)
 - Sustained atmospheric increase since 2007 after stagnation in the early 2000s
 - TD Methane global emissions are 558 TgCH₄/yr [540-570], 60% of anthropogenic origin
 - B-U infer much larger global totals because of larger natural emissions (fresh waters)
 - Agriculture & waste (tropics, mid-lats), wetlands (tropics, high lats), fossil fuel (mid-lats)
 - Chinese inverted methane emissions and trends are revised lower than in EDGAR4.2
 - Oceanic emissions have been revised downward following ESAS recent studies.
- Methane emission changes

Challenging atmospheric changes !

Global Means 1830 ppb reached in 2015 1810 CH4 (ppb) 1760 Steady increase in the 1980s, 1710 1990s (a bit slower) 1660 Pause in the early 2000s d(CH_)/dt (ppb yr⁻¹) 15 Renewed increase since 2007 10 5 Acceleration since 2014 ! 0 -5 F Growth Rate

Challenging signal to analyse !

Courtesy, Ed Dlugokencky, NOAA

Atmospheric observations

GLOBAL

CARBON PROJECT

Methane emission changes since 2000

Global Total sources :

CARBON PROJECT

GLOBAL

- Large year-to-year changes
- No trend from 2000 to 2006
- Emission shift in 2006-2008
- No trend from 2008 to 2012

Source: Saunois et al. ACPD 2017

Anthtopogenic vs. natural :

- Anthropogenic emissions grow faster in BU than in TD
- Wetland changes are not consistent between BU and TD between 2004 and 2010

What about Wetlands ?

- Wetlands emission changes are obtained using a carbon-cycle model ensemble constrained with remote sensing surface water and inventory-based wetland area data (SWAMPS-GLWD)
- Between 2000-2012, no global trend is found but boreal wetland CH₄ emissions increased by 1.2 Tg yr⁻¹ (-0.2-3.5 Tg yr⁻¹, due to temperature increase), tropical emissions decreased by 0.9 Tg yr⁻¹ (-3.2-1.1 Tg yr⁻¹, due to wetland area decrease),

GLOBAL

CARBON PROJECT

GLOBAL CARBON 2004-2010 emission difference: a geographic view

Source: Saunois et al. ACPD, 2017

Key point: Low agreement between TD and BU on the magnitude and location of emission changes

GLOBAL CARBON 2004-2010 emission difference: a process view

- Changes in methane emissions from 2004 (as 2002-2006 mean) to 2010 (as 2008-2012 mean) in TgCH₄.
- Largest contributors = agriculture & waste (TD), Fossil fuels (BU)
- Smaller to null contribution from wetlands
- Reduction of biomass burning emissions

Source: Saunois et al., ACPD 2017

Key points: agriculture & waste (+) and BBG (-) anomalies are consistent between TD and BU. Lower agreement for the contributions of other emission categories (FF and wetlands), but uncertainties remain large

> Emission inventories Biogeochemistry models & datadriven methods

• Methane Budget 2003-2012 (released on December 12th 2016)

GLOBAL CARBON

- Sustained atmospheric increase since 2007 after stagnation in the early 2000s
- TD Methane global emissions are 558 TgCH₄/yr [540-570], 60% of anthropogenic origin
- B-U infer much larger global totals because of larger natural emissions (fresh waters)
- Agriculture & waste (tropics, mid-lats), wetlands (tropics, high lats), fossil fuel (mid-lats)
- Chinese inverted methane emissions and trends are revised lower than in EDGAR4.2
- Oceanic emissions have been revised downward following ESAS recent studies
- Methane emission changes (2002-2006 vs. 2008-2012, paper released in April 2017)
 - +20 Tg/yr [13-32] for TD (mostly tropical) and +21Tg/yr [5-41] for B-U (mostly mid-lats).
 - Current most-likely scenario for the sustained atmospheric increase (no consensus!) :
 - dominance of microbial sources (¹³C compliant):
 - from agriculture and waste sectors
 - from wetlands (TD/BU disagreement)
 - decrease in BBG (¹³C compliant)
 - possible increase from fossil fuels (ethane compliant, BU / TD disagreement)
 - possible stagnation/decrease of OH since late 2000s (¹³C & NOx compliant)

Additionnal constraints are needed

Challenge : atmospheric increase versus IPCC scenarios

• +12ppb in 2014, ~+10 ppb in 2015

CARBON

PROJECT

GLOBAL

- The recent atmospheric increase is as fast as RCP8.5 scenario
- No basic IPCC scenario properly represents atmospheric increase
- Challenging signal to analyse !

Challenge : Integration of CH₄ & δ^{13} C & ethane atmospheric changes

Since 2007, \blacksquare of atmospheric CH₄

But ...

▶ of atmospheric δ^{13} C in CH₄ suggesting more lighter sources (biogenic), less heavier sources (e.g. FF, BBG), and/or less OH radicals

And ...

Of ethane in the NH (ZUG) suggesting more thermogenic emissions

But also ...

Y To → of surface CO and 7 to **Y** of NO₂ suggesting 7 then → **Y** of OH radicals

Sources: Nisbet et al., 2016 (top) ; Hausmann et al., 2016 (bottom); Mc Norton et al., (2015), Dalsoren et al., 2016)

Challenge : Integrate new observations

Integrating ¹³CH₄ continuous atmospheric data (Fr-Sw project iZomet)

CARBON

PROJECT

GLOBAL

GLOBAL CARBON Challenge : Integrate new observations

Aircores : Under-ballon sampler invented at NOAA.

MERLIN mission : One answer to some of the remaining questions

- MERLIN is a demonstrator GHG measurement from space using a LIDAR (IPDA technic)
- MERLIN should deliver methane columns day and night, at all latitudes and seasons, and with lower biases (<3.7ppb) than passive instruments.
- A first full error analysis (random + systematic) shows that MERLIN should be compliant with system requirements with a nominal random error of 22 ppb and a nominal systematic error of 2.9 ppb.
- Uncertainty reduction on methane emissions associated with this error budget and obtained by atmospheric inversions is on average of 57% (-9/+88) at sub-continental scale.
- Systematic errors limit significantly uncertainty reductions on emissions, with a degradation of initial errors in some configurations (Albedo+P_{surf}). Non-physical error scenarios still have to be discarded.
- MERLIN Performances appear better than GOSAT-CH₄ for most regions.

Past, present, and planed CO₂ and CH₄ space missions

CO2 missions	Agency	Orbit	P/A	wavel.	Spatial res.	Swath	2002	03	04	05 0	6 07	7 08	609	10	11 1	21	3 14	15	16	17	18	19	20	21	22 2	3 24	2025
ENVISAT SCHIAMACHY	ESA	helliosync	Р	SWIR	1800 km2	960 km																					
IASI	CNES-EUMETSAT	helliosync	Ρ	TIR		100 km																					
GOSAT TANSO-FTS	JAXA-NIES-MOE	helliosync	Ρ	SWIR	85 km2	520 km																					
OCO-2	NASA	helliosync	Ρ	SWIR	2,9 km2	11 km																					
TANSAT TU	CAS-MOS-CMA	helliosync	Р	SWIR	2 km2	-																					
	9	helliosync	Ρ	SWIR	4 km2	16 km																					
GOSAT-2	-MOE	helliosync	Ρ	SWIR	85 km2	632 km																					
MICROCARB	CNES	helliosync	Р	SWIR	40 km2	13 km																					
geoCARB	NASA	Geostat.	Р	SWIR	25-100 km2	-																					

CH4 missions	Agency	Orbit	P/A	wavel.	Spatial res.	Swath	2002	03	04	05 (06	07	08	09	10	11 1	12	13 1	4 1	5 1	6 17	18	3 19	2	0	21	22 2	32	4 2	2025
ENVISAT SCHIAMACHY	ESA	helliosync	Р	SWIR	1800 km2	960 km																								
GOSAT TANSO-FTS	JAXA-NIES-MOE	helliosync	Р	SWIR	85 km2	520 km																								
Sentinel-5P TROPOMI	ESA	helliosync	Р	SWIR	50 km2	2600 km																								
IASI	CNES-EUMETSAT	helliosync	Р	TIR		100 km																								
GOSAT-2	JAXA-NIES-MOE	helliosync	Р	SWIR	85 km2	632 km																								
IASI-NG	CNES-EUMETSAT	helliosync	Р	TIR																										
MERLIN	CNES-DLR	helliosync	A (LIDAR)	SWIR	-	100m																								
geoCARB	NASA	geostat.	Р	SWIR	25-100 km2	-																								
MetOp Stentinel 5	ESA-EUMETSAT	helliosync	Р	SWIR	49km2	2600 km																								

Terminated

CARBON

PROJECT

GLOBAL

Operational

Extended

Challenge: improve inventories

EDGAR V4.3.2 vs EDGAR 4.2 totant 80 Bor_NAme
contUSA
Cent_NAme
Trop_SAme
Temp_SAme
NAfr
SAfr Russia Oceania Europe China India SE_Asia SAf Eurasia Japan 60 China emissions 40 20 2000 2005 2010 2015 Years

- Reduction of total anthropogenic emissions :
 - Mostly in Eurasia (China, Russia, ..)
 - Due to Fossil fuels
 - Waste increases

Courtesy : G. Maenhout, JRC, Italy

Emission inventories

Challenge : role of OH radicals ?

 Sustained OH increase in the early 2000s can contribute to explain the the stagnation of atmospheric methane and the following increase

- Stagnation or decrease in OH radicals after the mid 2000s can contribute to explain :
 - the renewed increase of atmospheric methane since 2007
 - The lighter atmosphere in ¹³C isotope since 2007

• Possible cause : NO₂ variations ? Following a fast increase of the economy (e.g. Asia) and then a slow down after the 2007-2008 crisis (Krotkov et al. 2016; Schneider et al., 2015)

Atmospheric observations

GLOBAL

CARBON PROJECT

> Biogeochemistry models & datadriven methods

Challenge : role of OH radicals ?

- Sustained OH increase in the early 2000s can contribute to explain the the stagnation of atmospheric methane and the following increase
- Stagnation or decrease in OH radicals after the mid 2000s can contribute to explain :
 - the renewed increase of atmospheric methane since 2007
 - The lighter atmosphere in ¹³C isotope since 2007

• Possible cause : NO₂ variations ? Following a fast increase of the economy (e.g. Asia) and then a slow down after the 2007-2008 crisis (Krotkov et al. 2016; Schneider et al., 2015)

• But the significance of OH role is still discussed (Turner et al., 2017; Rigby et al., 2017)

Atmospheric observations

GLOBAL

CARBON PROJECT

> Key point: OH changes could have limited the emission changes necessary to explain the atmospheric variations but magnitude is uncertain.

Inverse models

Challenge : Improve transport models

 Errors on modelled transport are one main cause of uncertainties in the estimation of methane emissions by inverses models

GLOBAL

CARBON PROJECT

- Large-scale transport feteure not always consistent with observations (upper figure)
- Global models have difficulties to properly reproduce hourly to synoptic variations of atmospheric signals at continental sites close to emission zones
- Regional models necessitate adapted boundary conditions
- Stratospheric methane decrease difficult to catch with current models (even high resolution ones on the vertical, see lower figure)

- Remaining questions (at least some of them ...)
 - Can we improve the estimation of inland waters methane emissions ?
 - What about vegetation emissions ?
 - Can we monitor the atmosphere of major regions emitting methane (tropics, Arctic)?
 - How to attribute the recent changes in methane emission to regions ? To processes ?
 - How can we explain the acceleration of increase in the recent years ?
 - What is the role of OH ?
- Challenges
 - Maintain and enrich our monitoring capabilities from the surface and from space
 - Improve the chemistry transport models (transport & OH)
 - Develop or Improve process-based models for natural methane emissions
 - Be successful in the exciting on-going projects !
- Perspectives
 - Global Carbon Project initiatives to reduce uncertainties on the methane budget : Fluxnet-methane, inland waters, OH (MOORE foundation grant)
 - Re-boost of the TRANSCOM experiment (model intercomparisons)
 - Space missions (e.g. MERLIN !)

Atmospheric observations

Emission inventories Biogeochemistry models & datadriven methods

Methane sinks

Inverse models

Isotopic signatures & recent atmospheric change

GLOBAL

CARBON PROJECT

Figure 6: Isotopic signature (in ‰) of the emission change between 2002-2006 and 2008-2012 based on Eq. 1 and the isotopic source signatures from Schaefer et al. (2016) and Schwietzke et al. (2016) in filled and open symbols respectively. The range of the isotopic signature of the emission change derived by the box-model of Schaefer et al. (2016) is indicated as the grey shaded area when assuming constant OH. The isotopic signatures derived from the ensemble of bottom-up estimates are shown with triangle symbol. The individual inversions are shown in colour. The mean inversion estimates are shown with stars and circles, without and with taking into account the "other natural" sources, respectively. The range around the circle indicates the range due to the choice of the isotopic source signature for the "other natural" source between -40 ‰ and -57 ‰ (see text).

Thank you for your attention

PhDs & postdocs available Contact us !

Global Methane Budget Website http://www.globalcarbonproject.org/methanebudget

Activity Contacts	E-mail
Philippe Bousquet	philippe.bousquet@lsce.ipsl.fr
Marielle Saunois	marielle.saunois@lsce.ipsl.fr
Pep Canadell	pep.canadell@csiro.au