The Many Mysteries of Atmospheric Methane

Lori M. Bruhwiler

NOAA Earth System Research Laboratory

Why Do We Care About Methane?

A Fundamental Difference from CO₂: an Atmospheric Chemical Sink (But GWP of 28!)

Anthropogenic Sources of CH₄

LAW DOME ANTARCTICA (AVERAGE OF 3 ICE CORES), DE08-2

Natural Sources of CH₄

A possible climate-carbon feedback: permafrost carbon

- Orbital Forcing and Permafrost Carbon Feedbacks may explain hyperthermal events ~55Mya
- Global T increase of 5 C within a few 1000 years
- ~3700 PgC in Eocene permafrost (~1700 PgC today) (DeConto et al. Nature 2012)

How much could have been CH_4 ? ~3%?

(A coryphodon basking in the warm eocene)

Composite Precipitation - La Ninã

Global methane budget for 2000-2009

All sources

678 trillion grams a year

"Bottom-Up" Estimates of CH4 Emissions May Not be Consistent with Atmospheric Observtions (But Flux Inversions may Help).

We Have More Success Predicting CO₂ than CH₄ -But the Good News is that We Underestimated It!

Cubasch, U., D. Wuebbles, D. Chen, M.C. Facchini, D. Frame, N. Mahowald, and J.-G. Winther, 2013: Introduction. In: *Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change* [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

Atmospheric Monitoring of CH₄

1978- present:

Rowland-Blake Group, UC-Irvine 45 remote Pacific sites distributed from Alaska to New Zealand ~4 times per year ~100 halocarbons and hydrocarbons

1983- present:

NOAA Cooperative Air Sampling Network 60 sites (not all exactly remote) ~ Weekly 55 other radiatively active gases (CO, SF₆, N₂O, halocarbons)

Mid-1980s - present:

Advanced Global Atmospheric Gases Experiment (AGAGE) ~ dozen globally distributed sites Also includes XX gases

CSIRO (Cape Grim, 1984), LSCE, ECCC (Alert, 1988), JMA, FMI, Others

Calibration:

Requires the air sample analysis system to accurately measure a known concentration.

Standards must not drift over time.

Span the range of possible concentrations – from ice age values to modern polluted values.

Uncertainty of NOAA Network: 2.4 – 1.1 ppb (95%). (0.06% of global concentration or 0.5% of global emissions (~3Tg)

NOAA Maintains WMO Calibrations standards for CO_2 , CH_4 , N_2O , CO and SF_6

Why?

Global Average N-S Gradient Pacific-Atlantic Gradient Seasonal Cycle Trends ~1850 ppb ~150 ppb ~10ppb ~10s pbb <1 -~10ppb/yr

The NOAA Cooperative Air Sampling Network

NOAA Baseline Observatories: Continuous In Situ Measurements

What Can Be Learned From High-Frequency Data?

The North American Network: Aircraft and Towers

Pause in Growth

1) Approach to Steady-State (1780 ppb by 2010s) Dlugokencky et al., 1998,2003

2) Decreases in O&G Emissions Since the 1980s (Aydin et al., 2011; Simpson et al., 2012)

3) Reductions in Rice Emissions (Kai et al., 2011)

4) OH Increased (Rigby et al., 2017)

Renewed Growth

1) Microbial Emissions Going Up (Nisbet et al., 2016, Schaefer et al., 2016, Schwietzke et al. 2016)

2) Could be AnthropogenicMicrobial (Schaefer et al.,2016, Saunois et al., 2016).

3) Significant Contribution from US Emissions (Turner et al., 2016) or global fossil fuel emissions (Rice et al., 2016)

4) OH Decreased (Rigby et al., 2017)

5) It could be OH, hard to tell anything from isotopes (Turner et al., 2017)

What Can We Learn About CH₄ From Global Network Observations Using Multiple Species?

Other Observational Constraints:

 $\delta^{13}C(CH_4)$ CH_3CCI_3 (to get OH) C_2H_6 The Global Greenhouse Gas Reference Network: 190 sites in 46 countries

An Extensive Database of Isotopic Source Signatures Leads to a Revised Global CH₄ Budget

Sherwood OA, Schwietzke S, Arling VA, Etiope G (2017) Global Inventory of Gas Geochemistry Data from Fossil Fuel, Microbial and Biomass Burning Sources, Version 2017. Earth Syst Sci Data Discuss:1–35.

Global fossil fuel CH₄ emissions are *not* increasing

Schwietzke S, et al., (2017) Nature.

We also have a Different Type of Constraint: the Spatial Distribution

Control – Repeating Emissions

No Emissions north of 60N

Top-down studies are critical for evaluating bottom-up/ *inventory emission estimates*

- Early top-down work found larger O&G CH₄ emissions than accounted for by the EPA GHG inventory.
- Findings from recent studies:
- Skewed distribution of emission/facility or process
- Underestimation of large emissions (gathering)

NOAA airborne measurement campaigns in unconventional O&G basins in 2012-2015

(G. Petron)

- Incremental revisions of EPA emissions inventory model for O&G CH₄ emission since 2010 (black lines).
- Low-Medium-High emissions scenarios for O&G CH4 (red) based on most recent studies show that uncertainties are still large but do not indicate a major sudden increase in emissions

Can We Detect A Short-Term Trend using Vertical Gradients Derived from Aircraft Partial Columns?

Vertical Gradient: PBL- Free Trop.

<5 Day Sampling Interval Needed to Detect a Trend in 4 Years.

Sampling Interval Increases with Longer Time Detection Window.

Proximity to the Changing Source Matters

We Need Long Time Series to Detect Small Trends!

Table 6.1 Summary of available observations of methane in the Arctic.

AMAP, 2015

Atmospheric measurements can help us to understand the CH₄ Budget, but how do we get from here....

.....To Emissions? (Use Models!)

But We Really Want Emissions at Continental Scales...

Prior Emission Estimates

Atmospheric Transport Model

How Can We Increase Data Density?

World Data Centre for Greenhouse Gases, JMA

Representation Error (7 km NASA Nature Simulation)

Model Grid Box

- There is still debate about what's driving the recent growth in CH₄, but probably microbial sources play a role.
- We need long-term, high quality data in order to monitor changes in the CH₄ budget.
- Improved ability to model continental observations will be needed if we are to learn about regional emissions

