Observing methane from space

Daniel J. Jacob with Johannes D. Maasakkers, Daniel J. Varon, Jianxiong Sheng

Space-based instruments for atmospheric methane

Jacob et al. [2016]

Wavelength [µm]

Optimization of methane sources and trends from 2010-2015 GOSAT data

Analytical inversion with improved bottom-up inventories

Shortwave IR (SWIR) instruments for observing methane from space

Instrument	Agency	Data	Pixel size	Return time	Band	Precision
		period	[km²]		[µm]	
Past/present						
SCIAMACHY	ESA	2003-2012	30×60	6 days	1.65	1.5 %
GOSAT	JAXA	2009-	10×10	3 days (sparse)	1.65	0.6 %
GHGSat	GHGSat, Inc.	2016-	0.05x0.05	targets	1.65	1-10%

Future						
TROPOMI	ESA	2017-	7×7	1 day	2.3	0.6%
GOSAT-2	JAXA	2018-	10x10	3 days (sparse)	both	0.3%
Bluebird	Bluefield, Inc.	2019-	0.02x0.02	targets	2.3	0.8%
MERLIN	DLR/CNES	2021-	pencil		1.65	1-2%
geoCARB	NASA	selected	3×3	2-3x/day	2.3	~0.6%

Proposed						
CarbonSat	ESA	proposed	2×2	5-10 days	1.65	0.4%
GeoFTS	NASA	proposed	3x3	2 hours	both	0.2%
G3E	ESA	proposed	2x3	2 hours	both	0.5%
CHRONOS	NASA	proposed	4x4	1 hour	2.3	1.0%

Simple mass balance approach to compare information on emissions from different satellite instruments

Instrument defined by pixel size L, precision σ , return time t_R

Jacob et al. [2016]

Detectability of regional and point sources of methane

Instrument	Averaging time required to quantify regional source (Q =72 tons h ⁻¹ over 300×300 km ²)	Single-pass point source detection threshold [tons h ⁻¹]
SCIAMACHY	1 year	68
GOSAT	1 year	7.1
TROPOMI	Single pass (1 day)	4.2
GOSAT-2	4 months	4.0
MERLIN	7 months	NA
geoCARB	Single pass (2-3x/day)	3.0
GHGSat	NA	0.25
Bluebird	NA	0.013

Lom Pangar Dam, Cameroon April 20th, 2017 GHGSat-D excess CH₄ column measurement

Lom Pangar Dam, Cameroon April 20th, 2017 GHGSat-D excess CH₄ column measurement

2

3

4 km

Lom Pangar Dam, Cameroon April 20th, 2017 GHGSat-D excess CH₄ column measurement

2017 GHGSat, Inc

0

1

Using plume information to quantify point sources: 3 methods

In all cases we need independent info on U:

- Instantaneous wind at source location for method 1
- Instantaneous wind alomg plume for method 2
- Effective wind for transport of plume "blob" for method 3

Instantaneous plumes don't look Gaussian

of methane plumes in Four Corners Frankenberg et al. [2016]

Exporing IME method with LES of point source plumes

Daniel Varon, Harvard

Debate over GOSAT-derived US methane emission trends

Figure 2. The 2010–2014 trend in U.S. methane enhancements as seen from GOSAT. The methane enhancement (Δ methane) is defined as the difference in the tropospheric column mixing ratio relative to the oceanic background measured in the glint mode over the North Pacific (176–128°W, 25–43°N) and normalized with the 2010 Δ methane. Trends are computed on a 4° × 4° grid. Statistically significant trends (p < 0.01) are indicated by a dot.

Figure 3. Spatial frequency distributions of 2010–2014 methane increases seen from GOSAT. Values are shown for the state of Oklahoma, the contiguous U.S. (CONUS), and the North Pacific (176–128°W, 25–43°N). The 2010–2014 trend at the NOAA Mauna Loa Observatory site (MLO) is also shown. GOSAT trends were computed on a $0.5^{\circ} \times 0.5^{\circ}$ grid, weighted by the square root of the number of retrievals, and distributions were computed with kernel density estimation.

Bruhwiler et al. [2017] object that:

- Trends over 3 years are more likely driven by meteorological IAV than emissions
- Use of same-latitude N Pacific as background ignores meridional flow influences
- NOAA sites and related inversions show no trend

Trends in North American emissions inferred from GOSAT

Assume that methane enhancement above background is proportional to emissions

Trends in methane enhancements from GOSAT, 2010-2015

National and sectoral trends in methane enhancements

Inferred US emission trend is +2% per year, driven by both oil/gas and livestock

Sheng et al., in prep

What could be driving these trends?

Increasing fracking in US (Drillinginfo, 2016)

Increasing swine manure in . Midwest (Iowa DNR, 2015)

Decreasing cattle in Mexico (USDA, 2015)

US oil and gas activities

Total gas production

Oil production

2300000 2100000

1900000

1700000

1500000

1300000

(MMfc)

350000

300000

250000

200000

rrels

head

8

Sheng et al., in prep

Some recommendations for the future

- Combine SWIR and TIR retrievals to resolve vertical distribution of methane
 Improve detectability and data interpretation for the Arctic
- Fly geostationary mission with staring sub-km capability over source regions
 - Detect point sources, "super-emitters", cloudy wetlands
- Need improved algorithms to relate plume observations to point sources
 - We're working on it...
- Improve global bottom-up inventories for inverse analyses
 - Improve quality and interpretation of inversions, top-down/bottom-up partnership
- Develop combined satellite + suborbital observing systems for source regions
 - Suborbital perspective essential for monitoring multitude of point sources