Fossil Fuel Discussion
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Has energy production played a role? .
What can we learn from energy production? Nisbet et al. 2016



Main Points

1. The exploration of fossil fuel emissions of
CH4 have given us a set tools that can be
used to look at methane emissions in other
source categories.

2. Relying on tracer ratios may get us into
trouble and we have to be careful how much
we interpret these ratios.



Outline:

1.Regional studies in the US
a. Methods
b. Changing end-members

2.Global constraints
a.Ethane

b.13CH,



Energy production

US CO, emissions from oil/gas/coal
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NOAA aircraft mass balance study regions
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Summary regional studies

~—Weighted Mean] e The NOAA mass balance

--EPA (2016)

Eagle Ford
Haynesville
Marcellus

estimates from 9 different

basins suggest a weighted mean

=i of 1.6% .

Denver-Julesburgl—— * The smaller producing fields are
Bakken—— driving the average leak rate up.

6 8
Leak Rate (%)
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Mass Balance v. Inventory

Comparison between bottom up and top down in Barnet using 8 mass balance flights

Average

March 27
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Total Methane (Mg CH,/h) Fossil Methane (Mg CHy/h)

Top-down Bottom-up

Reconciliation of top down and bottom up was 10% for total
CH4 and 0.1% for fossil CH,:
e Better accounting of facilities (missing from EPA database)

* Accounting for “outlier emitters” — the fat tail
Source: Zavala-Araiza et al. 2015



Spatial comparison

Bottom up inventories for Barnet Shale Region
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Improvements in bottom up

ridded EPA Inventor or 2012

CH, emissions (Mg a' km?)

EDGAR v4 2 Inventor for 2008

CH, emissions (Mg a' km?

Maasakkers et al., 2016



TOPDOWN 2015

Twin Otter Projects Defining Oil Well and Natural gas emissions
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Potential sources of CH, in

San Juan Basin
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Emissions from
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waste management
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wetlands are small



San Juan Basin
The largest Coal Bed Methane producer in the US

-125 -120 -115 -110 -105 -100 -95 -

0.0 40 8.0 12.0 16.0 20.0 240 28.0
Column CH, anomaly (ppb)

SCIAMACHY 2003-2009 = 0.59 Tg CH,/yr Kortetal.2013




Multi-scale/level Approach

Mass Balance
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Winds (Vcos)
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Methane Enhancement (ACH4)
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Boundary Layer Height (PBL)
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4/07/2015
Otter:
4/19/2015

4/21/2015
4/23/2015

4/29/2015

Mass Balance Summary

Local hr No. of
(-6 UTC hr) Transects

15.5

16.2
16.2-17.2
15.8

17.0

O (deg)

8.1+2.6

6.8+1.9

7.0+1.8

5.8+1.6

2, (magl)

2138 £71

2250 £124
2263 £106
2450 £257

2150 +347

Campaign Mean:

fluxcy,
(Tgyr?)

0.45 £0.15

0.57 £0.25
0.31+0.13
0.55 +0.19

0.84 +0.30

0.54 +0.20




Point Source ID and Quantification




Example of Point Source ID and
Quantification (Moone




Point Source ID and Quantification




Regional Mass Balance
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NASA HyTES and AVIRIS on Twin Otters

AVIRIS

CH, column measurements

HyTES

Hyperspectral Images taken from the
aircraft in the short-wave (AVIRIS-NG) and
thermal range (HyTES)



Legend

HyTES plume detections
AVIRIS-ng plumes (kg/hr)
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Like the Barnett the 4-
corners region suggests a
fat-tail distribution;
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Point Source measurements

Point source fluxcyy (Tg yrl) % total basin flux g,
This work (Mooney)

Carbon Junction Seep 0.0062 1.2

Coal mine vent shaft 0.013 2.4

Y. Observed sources (n = 18) 0.047 8.7
Frankenberg et al. (2016)

Coal mine vent shaft 0.014 2.6

Y. Observed sources (n =>200) 0.23-0.38 43-72

Despite fat tail distribution no one source accounts for
more than 2.4% of the total basin wide production




Time evolution of production in Four Corners

Aircraft

Satellite Era - Campaign
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Gas production significantly decreased while oil production significantly

increased:

- Does this suggest that there is no correlation between gas production and leakage?
- Does this suggest that oil may be the cause of the leaks?

- Does this suggest there are other sources?
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Energy production

US CO, emissions from oil/gas/coal

Energy-related carbon dioxide emissions (1990-2040)
billion metric tons
3.0 petroleum 3.0 natural gas
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Global Carbon Budget

GLOBAL METHANE BUDGET SI0J©

CH4 ATMOSPHERIC
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Global Carbon Budget

Fossil fuel
production and use Agriculture and waste



New Global Budget

Fossil fuels Microbial Biomass burning
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Changes since the pre-industrial

Table 1 | 3**C-based source attribution means for different periods.
0-1700AD* 1985-2002 a0 2003-2013aD

Total fossil fuelst 51+ 20 211433 1954+ 32

—-l

Fossll fuel Industries 0 161 +24 145423
Geological sources 51420

Microbla 4 4 330428 355427
Blomass burning 254 43419

YalUas are gven 25 mean = ong standarg aaviation In uniks of Bragrames of methane per yoar.

Only requires a doubling of the microbial component



Ethane
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Ethane

Helmig et al. 2016
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Point source
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Ethane is going up but Methane is not



Comparison of methods

2010-2014 trend in U.S. methane enhancements
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US Methane Trends

Posterior Emissions

GOSAT The optimal agrees well with NACP

Benmergui et al. In prep



Main Points

1. The exploration of fossil fuel emissions of
CH4 have given us a set tools that can be
used to look at methane emissions in other
source categories.

2. Relying on tracer ratios may get us into
trouble and we have to be careful how much
we interpret these ratios.



