Fossil Fuel Discussion

Has energy production played a role? What can we learn from energy production?

Nisbet et al. 2016

Main Points

- 1. The exploration of fossil fuel emissions of CH4 have given us a set tools that can be used to look at methane emissions in other source categories.
- Relying on tracer ratios may get us into trouble and we have to be careful how much we interpret these ratios.

Outline: 1. Regional studies in the US a. Methods b. Changing end-members 2. Global constraints a. Ethane b. ¹³CH₄

Energy production

US CO₂ emissions from oil/gas/coal

Source: EIA

NOAA aircraft mass balance study regions

Summary regional studies

•

- The NOAA mass balance estimates from 9 different basins suggest a weighted mean of 1.6%.
- The smaller producing fields are • driving the average leak rate up.

Karion et al. (2013; 2015) Petron et al. (2012; 2014) Peischl et al. (2015; 2016) Smith et al. (2016)

Mass Balance v. Inventory

Comparison between bottom up and top down in Barnet using 8 mass balance flights

Reconciliation of top down and bottom up was 10% for total CH4 and 0.1% for fossil CH₄:

- Better accounting of facilities (missing from EPA database)
- Accounting for "outlier emitters" the fat tail

Source: Zavala-Araiza et al. 2015

Spatial comparison

Bottom up inventories for Barnet Shale Region

EDGARv4.2

EDF – Lyons et al. 2015

Vast difference in where the source was located between the two inventories.

Improvements in bottom up

Maasakkers et al., 2016

TOPDOWN 2015

Twin Otter Projects Defining Oil Well and Natural gas emissions

Potential sources of CH₄ in San Juan Basin

Bottom up Estimates = 0.42-0.52 Tg/yr

- Coal bed methane (CBM)
- Tight Sandstone natural gas production
- Active Coal mining
- Geological seeps
- Large Power plants
- Oil production
- Emissions from agricultural sources, waste management facilities and wetlands are small

San Juan Basin The largest Coal Bed Methane producer in the US

Multi-scale/level Approach

Mass Balance

- Umich
- NOAA/GMD
- NOAA/CSD

Total basin emissions and large-scale source allocation

Point Source identification

- Scientific aviation
- NASA/JPL

- U of Colorado*
- NOAA/GMD
- LANL

emissions

Large emitter site location and emissions quantification

Process level emissions verification and emissions profile (e.g. CH_4/C_2H_6)

$$\dot{n}_{CH_4} = V \cos \theta \int_{-b}^{+b} \Delta X_{CH_4} \left(\int_{z_{gnd}}^{z_{PBL}} n_{air} dz \right) dx$$

Mass Balance Winds (Vcosθ)

$$\dot{n}_{CH_4} = V \cos \theta \int_{-b}^{-b} \Delta X_{CH_4} \left(\int_{z_{gnd}}^{z_{PBL}} n_{air} dz \right) dx$$

Mass Balance Methane Enhancement (ΔCH4)

$$\dot{n}_{CH_4} = V \cos \theta \int_{-}^{+} \Delta X_{CH_4} \left(\int_{z_{gnd}}^{z_{PBL}} n_{air} dz \right) dx$$

Mass Balance Boundary Layer Height (PBL)

Profile location

$$\dot{n}_{CH_4} = V \cos \theta \int_{-b}^{+b} \Delta X_{CH_4} \left(\int_{z_{gnd}}^{z_{PBL}} n_{air} dz \right) dx$$

Mass Balance Summary

Date	Local hr (-6 UTC hr)	No. of Transects	Θ (deg)	υ (m s ⁻¹)	z ₁ (magl)	flux _{cн4} (Tg yr⁻¹)
Mooney:						
4/07/2015	15.5	1	42 ±10	10 ±2	2138 ±71	0.45 ±0.15
Otter:						
4/19/2015	16.2	1	93 ±24	8.1 ±2.6	2250 ±124	0.57 ±0.25
4/21/2015	16.2-17.2	4	95 ±22	6.8 ±1.9	2263 ±106	0.31 ±0.13
4/23/2015	15.8	1	45 ±20	7.0 ±1.8	2450 ±257	0.55 ±0.19
4/29/2015	17.0	1	83 ±25	5.8 ±1.6	2150 ±347	0.84 ±0.30
			Campaign Mean:			0.54 ±0.20

Total Mass Balance was consistent with 0.59 Tg/yr found from satellite

Point Source ID and Quantification

Example of Point Source ID and Quantification (Mooney)

Point Source ID and Quantification

Regional Mass Balance

$$\dot{n}_{CH_4} = V \cos \theta \int_{-b}^{+b} \Delta X_{CH_4} \left(\int_{z_{gnd}}^{z_{PBL}} n_{air} dz \right) dx$$

NASA HyTES and AVIRIS on Twin Otters CH₄ column measurements

HyTES

Hyperspectral Images taken from the aircraft in the short-wave (AVIRIS-NG) and thermal range (HyTES)

AVRIS finds the fat tail

0.23-0.38 Tg/yr

Like the Barnett the 4corners region suggests a fat-tail distribution; however no single source dominates the regional emissions.

Frankenberg et al. 2016

Point Source measurements

Point source	<i>flux</i> _{CH4} (Tg yr ⁻¹)	% total basin <i>flux_{CH4}</i>
This work (Mooney)		
Carbon Junction Seep	0.0062	1.2
Coal mine vent shaft	0.013	2.4
Σ Observed sources (n = 18)	0.047	8.7
Frankenberg et al. (2016)		
Coal mine vent shaft	0.014	2.6
Σ Observed sources (n = >200)	0.23-0.38	43-72

Despite fat tail distribution no one source accounts for more than 2.4% of the total basin wide production

Time evolution of production in Four Corners

Gas production significantly decreased while oil production significantly increased:

- Does this suggest that there is no correlation between gas production and leakage?
- Does this suggest that oil may be the cause of the leaks?
- Does this suggest there are other sources?

Methane to Ethane ratio changes

20131019 2050 CH_4 1950 1950 1950 1950 1950 -97 -97-96.5

Energy production

US CO₂ emissions from oil/gas/coal

Source: EIA

Global Carbon Budget

Global Carbon Budget

New Global Budget

Schwietzke et al., 2016

Fossil Fuel is now almost twice the global budget

Changes since the pre-industrial

Table 1 δ^{13} C-based source attribution means for different periods.								
	0-1700AD*	1985-2002 AD	2003-2013 AD					
Total fossil fuels	51±20	211±33	195±32					
Fossil fuel industries	0	161 ± 24	145±23					
Geological sources		51±20						
Microbial	154 ± 19	330±28	355±27					
Biomass burning	25±5	43	±9					
Values are given as mean + one standard deviation in units of teragrams of methane nor year								

Only requires a doubling of the microbial component

Ethane

Simpson et al., 2012 Aydin et al., 2011

Hausmann et al. 2016

Ethane

Helmig et al. 2016

Point source

Kort et al. 2016

Ethane is going up but Methane is not

Comparison of methods

2010–2014 trend in U.S. methane enhancements

Turner et al. (2016)

 $\Delta CH4 = BL - FT$

2014

US Methane Trends

Benmergui et al. In prep

Main Points

- 1. The exploration of fossil fuel emissions of CH4 have given us a set tools that can be used to look at methane emissions in other source categories.
- Relying on tracer ratios may get us into trouble and we have to be careful how much we interpret these ratios.