Deglacial ITCZ shifts and Human Population Responses

Overview

Part I

- Signature of and controls on marine ITCZ
- Atlantic and Pacific ITCZ shifts since 20 ka

Part 2

- North African climate and vegetation
- Human population dynamics

Tropical ocean temperatures and rainfall

Historical Atlantic ITCZ variability

Base period 1979-1999

Interannual-decadal variability: ± 2° latitude

Part I:What controls the mean ITCZ position

1) Interhemispheric T difference (global)

- ITCZ shifts away from colder hemisphere.
- Hadley circulation transports heat to winter hemi.

2) Orbital monsoon forcing (regional)

 Stronger monsoonal circulation from orbital precession draws 'rain belt' away from equator.

Seasonal ITCZ amplitude and heat transport

Slope: 1PW per 3° shift

ITCZ seasonal range of ±6° is associated with ±2.5 PW atmospheric heat transport toward winter hemisphere

McGee et al., 2014 Donahoe et al., 2013

How large were past global ITCZ shifts?

Slope is remarkably constant for 2xCO2, LGM, 6K, Hosing experiments,

approx. 3° shift per 1PW

Places fundamental limits on magnitude of global mean ITCZ shifts.

McGee et al., 2014 Donahoe et al., 2013

ITCZ - Historical and last millennium

Last Century

Last Millennium

Importance of the interhemispheric T-gradient

Atlantic ITCZ shift in hosing experiment

Δ temperature (°C)

Δ precipitation (m/y)

10° southward ITCZ shift

ITCZ imprints ocean salinity field

Salinity

Coretop Calibration

Estimating $\delta^{18}O_{seawater}$ with Foram Chemistry

Isotope temperature equation (Bemis et al., 1998):

T (°C) =
$$16.5 - 4.80 (\delta^{18}O_{shell} - \delta^{18}O_{seawater})$$

Mg/Ca temperature equation (Dekens et al., 2002):

$$T(^{\circ}C) = \ln (Mg/Ca / 0.38) / 0.09 + 0.61*core depth(km)$$

Shell
$$\delta^{18}O_{\text{seawater}} = \delta^{18}O_{\text{shell}} + (T_{\text{Mg/Ca}} - 16.5)/4.8) + 0.27$$

G. ruber (white)

Arbuszewski et al., 2010

Proxy Calibration

Arbuszewski et al., 2010

Enhanced Niger River runoff - early Holocene

AHP

Weldeab et al, 2009

Deglacial Atlantic ITCZ shifts

S'ward shift during stadials due to N.Atl. cooling N'ward shift follows early Holocene insolation

low salinity

high salinity

Arbuszewski et al., 2013

Deglacial marine ITCZ amplitude

Deglacial ITCZ ranges from Atlantic $\delta^{18}O_{SW}$

5°N - Modern
12°N - E. Holocene
2°S - Heinrich I

Deglacial Atlantic ITCZ shifts: ±7° latitude?

Antiphasing of tropical precipitation records.

Paced by crossequatorial T-gradients

Ultimately linked to orbital and high-latitude forcing

McGee et al., 2013

fresh 1st principal compone 8.0 0.2 Interhemispheric Temperatur Gradient (°C) salty Heat transport anomaly -1.2-F. Average 1st principal component Interhemispheric temp grad (Shakun) YD HS₁ Interhemispheric temp grad (Marcott) Interhemispheric temp grad (modeled) 16 20 Thousands of years BP ---- Atmosphere heat Ocean heat

Pacific ITCZ

ITCZ shifted south during stadials...

... but no northward shift during Holocene?

Gibbons et al., 2014 EPSL

Part I Summary

 Observations and models suggest global ITCZ position restricted to <1° departures from mean.

 Atlantic marine ITCZ appears to have shifted ±7° over the last 25 ka. Pacific ITCZ shifts were large too.

 Paleo-data may have seasonal bias, certainly regional biases.

Part 2: Holocene population dynamics

Time-transgressive end to the AHP

AHP ended first in north, later in the south - tracking insolation.

Shanahan et al., 2015 deMenocal, 2015

Stone art & engravings

impressive tools and craft

Holocene population dynamics

Depopulation of the Sahara (5 ka BP)

Kuper and Kroepelin, 2006

The first Pyramids (4700 yr BP)

Necropolis complex at Saqqara

Protodynastic Egypt (Naqada III period)

Named Kings, State formation. Political unification along Nile. Many notable "firsts"

about 5000 yr BP

Narmer Palette

Serekh of Pharaoh Djet