

(my) Nomenclature.

Monsoons are on land.

The *ITCZ* is the zonalmean near-equatorial maximum of precipitation, or the oceanic rainfall that projects strongly on it.

A regional measure of the annual cycle: The 1st EOF / PC pair.

- ✓ It selects locations where the annual cycle is dominant.
- ✓ It selects a near perfect sine wave.
- X It is sensitive to the choice of domain.
- X It lumps together places that might behave differently in a different climate regime.

A local measure of the annual cycle: The local annual harmonic.

$$P = P_0 + P_1 e^{-i(\omega t + \phi)} + \dots$$
mean annual harmonic higher freq. harmonics

- X It might explain a small fraction of the climatology.
- X It can be noisy.
- ✓ It allows a less ambiguous interpretation of local changes.
- ✓ It can capture local changes that are not part of a global pattern.

The projected changes of the annual cycle: Amplification and Delay.

Amplification: precipitation increases in summer and decreases in winter.

NH tropical mean

SH tropical mean

Summer increases are large.
Winter decreases are modest.

Tan et al. (2008)

Amplification: precipitation increases in summer and decreases in winter.

JAS change (departure from annual mean change) 50N 1.5 40N 30N 20N 0.5 10N 0 **10S** -0.5**20S** 30S -1 40S 50S 110W 0E 50E 100E 150E 160W 60W 10W

FIG. 9. Precipitation seasonal changes in (a) JFM [δ Prec(JFM)] and (b) JAS [δ Prec(JAS)] (contour interval = 0.25 mm day⁻¹).

The increase in seasonal range is especially clear over the ocean and the Asian monsoon regions.

A delay of tropical precipitation

Extended dry season in most monsoon regions (less robust than global pattern)

There are amplification and delay in the annual cycle of tropical SST as well

Mechanisms relevant for the (zonal mean) ITCZ:

An AGCM forced by RCP8.5 SST produces amplification and delay in the zonal mean ITCZ

We decompose the SST changes in mean+annual cycle.

To get to the cause of precipitation changes we impose each component separately:

lessons from the moisture budget

$$P = E + \left\langle -\vec{u} \cdot \vec{\nabla}q \right\rangle + \left\langle -\omega \frac{\partial q}{\partial p} \right\rangle - \left\langle \frac{\partial q}{\partial t} \right\rangle$$
 precipitation horizontal vertical evaporation moisture moisture tendency convergence convergence

Write all terms as $P = P_0 + P_1 e^{-i(\omega t + \phi)} + ...$ etc, take the 21C-20C difference, linearize, rearrange...

The dominant term is vertical moisture advection: $\left\langle -\omega \frac{\partial q}{\partial p} \right\rangle$

Write all terms as $\omega = \omega_0 + \omega_1 e^{-i(\omega t + \phi)} + ...$ etc

Amplitude changes are the seasonal expression of "x-get-xer"

← Precipitation amplitude increases in all simulations

← But the mechanism is different: only in RCP8.5 and UW, the amplitude increases due to a rise in annual mean humidity

CMIP5 changes

Uniform warming

Seasonal SST changes

Phase changes come from circulation changes – but are still unexplained

CMIP5 changes

- ← Precipitation phase delays in all simulations
- ← Mechanism is the same:phase delay in ω
- ? The mismatch in the seasonal SST run might stem from the large uniform delay of SST (bad match for CMIP5)
- ? What is the origin in the +3K run?

Uniform warming

Seasonal SST changes

Do the same mechanisms explain rainfall anomalies in the monsoon regions? No

← Example: the uniform warming dries the Sahel

← the seasonal changes in SST induce a delay, similar to the RCP8.5.

Difference between ITCZ and all monsoons is apparent in idealized CMIP5 simulations (Abrupt 4xCO₂)

Abrupt 4xCO₂

50

The SST evolution after abrupt quadrupling of CO₂ reveals different timescales:

annual mean is slow

Land-Sea Temperature contrast is intermediate

100

amplitude is abrupt

phase is nothing

Comparing ITCZ and monsoons in idealized CMIP5 simulations (Abrupt 4xCO₂)

amplitude is slow for ITCZ, abrupt for monsoons

Confirms rich-get-richer thermodynamic argument.

Confirms dynamic argument—possibly due to Amplitude of SST.

Comparing ITCZ and monsoons in idealized CMIP5 simulations (Abrupt 4xCO₂)

Confirms a complex interaction of thermodynamics and dynamics. Possibly due to land-sea contrast.

Comparing ITCZ and monsoons by decomposing rainfall in intensity and frequency of rainy days

intensity

Intensity contributes to amplification, but not delay.

Intensity contributes to amplification & delay.

Comparing ITCZ and monsoons by decomposing rainfall in intensity and frequency of rainy days

frequency

Frequency contributes to delay, but not amplification.

Frequency changes are not sinusoidal:

- mostly negative
- positive in NH fall.

Summary (1)

The annual cycle of both ITCZ and monsoons is amplified and delayed when CO₂ increases.

For the annual cycle of the zonal mean ITCZ, uniform warming is the dominant forcing:

- 1. increased mean q leads to amplification (via rainfall intensity)—x-get-xer.
- 2. delay of the circulation leads to rainfall delay (via rain frequency)—unexplained. (but maybe a different story when land is included)

Anomalies in the amplitude and phase of the monsoons are initiated by circulation changes, but local moisture recycling might matter as well.

Summary (2)

You don't have to agree with my ITCZ/monsoon nomenclature, but please treat land separate from ocean!

Join us in NYC in September (and join the MIP)

Monsoons & ITCZ: the annual cycle in the Holocene and the future.

September 15-18(19), 2015

An open conference and workshop at Columbia University, New York

http://www.ldeo.columbia.edu/~biasutti/MonsoonITCZsWorkshop/