The impact of vertical motion
structure on the amplification of
tropical convection

Larissa Back and Kuniaki Inoue
University of Wisconsin-Madison




Vertical motion structures vary in space

and time in the ITCZ
* Top-heavy * Bottom-heavy

Affects moist static

energy budgets, gross

moist stability (GMS)
Large-scale
dynamics

e.g. Back and Bretherton 2006, Handlos and Back
2014, Inoue and Back 2015a&b, many others



Geographic variability in mean vertical motion
profiles due to effects of SST-gradients, relative SST,

GPCP precipitation (mm/day)
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Temporal variability of vertical motion

profiles:

* During tropical deep convection, often observe
bottom-heavy vertical motion profiles transitioning to

top-heavy vertical motion profiles

Low gross
moist stability
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- Thought to occur for range of timescales of variability
- Does this play a role in amplification/decay?
- What is appropriate value for comparing with theory?



Objectives:

* |nvestigate mechanisms of convective
amplification and decay by analyzing the gross

moist stability (GMS) . _ V- (h)
- V- (s0)

— Sometimes convection “self-amplifies” via low
GMS associated with bottom-heavy vertical
motion profiles

— Climatological GMS related to feedbacks between
convection & radiation, evaporation



Normalize MSE budget terms by intensity
- Gross Moist Stability (GMS)
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GMS describes efficiency of h export by horizontal, vertical motion
Effective GMS is I'-T

Examine relationship to convective growth/decay during lifecycles

Deday?

Growth?
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Can “predict” Amplifying and Decaying phases of
event lifecycle using:

a) small temperature tendency
b) rain increases with column moisture
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Test idea using Tropical Ocean-Global Atmosphere
Coupled Ocean-Atmosphere Response Experiment
(TOGA COARE)

Radiosonde Types in TOGA COARE
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* Filter data to remove diurnal cycle (so T tendency small)

*Bin by an effective GMS (drying efficiency) I'-I', (for cases
with denominator > 10 W/m?%)

* Examine frequency of precipitation increases, amount of
precipitation increase
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Critical GMS (associated with diabatic
terms) relatively constant
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Critical GMS is relatively
constant in both amp/
decay phases (no a priori
reason to expect)

Radiation plus surface
fluxes always tend to
destabilize the convection

by supplying MSE source

Diabatic sources don’t
seem to regulate
transition from growth to
decay (timescale
dependent?) 9



Vertical GMS explains variability in
amplifying phase
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In the amplifying phase,
vertical GMS explains
most of the variability of
effective GMS
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Vertical advection (& GMS) variations
related to vertical motion profile shape

(b) Omega [Pa/s] vs I, (V-<sv>>0)
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Horizontal GMS explains the variability
in decaying phase
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Constant critical GMS associated with
regression of radiative cooling plus evaporation
on precipitation
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* This is a better fit than assuming constant
gross moist stability
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Interpretation:

* Gross moist stability fluctuates around a critical
(characteristic) value which is determined by
relationship between convection and surface fluxes,
radiative cooling

F ~~V- '::'\."‘.::' I‘(. V : (s1) =7
=~ <0 Amplifying phase
['=v>0. Decaying phase

* Feedbacks (radiative-convection and convergence)
determine threshhold

e Characteristic GMS the one important for MJO, ITCZ-
scale dynamics?



Gross moist stability fluctuations
around a characteristic value?
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Pressure [hPa]

Case I: Greater Characteristic GMS

(1) (2) (3)
Case II: Smaller Characteristic GMS
(1’) (2') (3’)

Latent heating [K/s]

Latent heating [K/s]

Latent heating [K/s]

Like ITCZ
regions
without
strong SST
gradients?

Like ITCZ
regions
driven by
strong SST
gradients?

15



Variations in relationship between convection and
radiative cooling, surface fluxes consistent with this

GPCP precipitation (mm/day)
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Precipitation and surface fluxes

correlated throughout ITCZ
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Why geographic variability in vertical

motion profiles, feedbacks?

* Back and Bretherton 2009a showed that Lindzen and Nigam 1987-
type mechanism drives most surface convergence patterns,

* Back and Bretherton 2009b showed that depth convection
associated w/surface convergenence reaches modulated by local

SST

* Deeper convection is associated with greater reductions in
radiative cooling when convection happens

Free troposphere T
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Conclusions

e Substantial geographic and temporal
variability in vertical motion profiles

* Sometimes convection “self-amplifies” by
importing moisture, leading to more
convection, when GMS is below threshhold
value

e Threshhold value related to feedbacks between
diabatic terms and convection

* Geographic variability in characteristic GMS
can be explained by differences in feedbacks



