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Introduction:	

the idea of modeling tropical precipitation in a single column 
(Sobel and Bretherton 2000, Raymond and Zeng 2005, Kuang 2008, 
Romps 2012, …) 	


2 Analytical analyses

From now on, we use the equations in p coordinate (see Appendix A) as following:
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Some useful derivations. Plug thermal dynamic equation back to replace Q, we have
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For now we only consider the boundary condition as w = 0 at bottom and top.
Given a horizontal wavenumber k, the above equation becomes
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6

Q and w have to be solved simultaneously.	

written as126

Wwtg

∂θ

∂z
=

θ − θref
τ

, (1)

where Wwtg is the parameterized large-scale vertical velocity, θ is the CRM horizontal av-127

eraged potential temperature, and θref is the reference temperature (In practice, virtual128

potential temperature is used to replace potential temperature because it better represents129

air buoyancy.) τ , the WTG relaxation time scale, is usually interpreted as the time scale130

for gravity waves to propagate out of the domain and reduce the horizontal temperature131

gradient. Unless otherwise stated, τ is set to be 3 hours following the study of Wang and132

Sobel (2011). Sensitivity experiments to the choice of τ are presented in section 3e. In133

the planetary boundary layer (PBL) where WTG is not applicable, as an ad hoc treatment134

(Sobel and Bretherton 2000), w is linearly interpolated from 0 at surface to the Wwtg at the135

top of planetary boundary layer (fixed as 1 km height). At the end of every CRM time step,136

Wwtg is diagnosed using equation (1). The vertical advection of temperature and moisture137

by Wwtg is then applied uniformly in the horizontal on the CRM during the following time138

step.139

With the WTG applied on the CRM, the system is composed of three components: con-140

vection, radiation, and large-scale vertical motion. Convection depends on column state141

variables such as temperature, moisture, and surface conditions such as SST (Kuang 2010),142

because those are the only things that convective plumes can feel. The interactive radiation143

depends on the temperature and moisture, and the cloud distribution associated with con-144

vection. The large-scale motion (Wwtg) is only a function of horizontal-mean temperature,145

however it feeds back to the other two components through vertical advection of temperature146

and moisture.147
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the weak temperature gradient	
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Applications: convection responses to ENSO (e.g. Chiang and Sobel 2002); 
Seasonality (Gentine et a. 2015); QBO (Nie and Sobel 2015), …	




However, what about the extratropics? 	




2 Analytical analyses

From now on, we use the equations in p coordinate (see Appendix A) as following:
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convective heating	


convective moistening	


tropics: 	

	

WTG	


a closure (super-domain scale parameterization) that relate the large-
scale vertical motion with the states of the local column :	


extratropics: 	

	

?	
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convective heating	


convective moistening	


tropics: 	

	

WTG	


extratropics: 	

	

QG-omega	


a closure (super-domain scale parameterization) that relate the large-
scale vertical motion with the states of the local column :	




quasi-geostrophic omega equation:	

2 Analytical analyses

From now on, we use the equations in p coordinate (see Appendix A) as following:
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differential vorticity 
advection	


differential 
temperature advection	


convective 
heating	
- omega	


ωtotal =ως +ωT +ωQ

ωQG



ωtotal =ως +ωT +ωQ

longwave limit: middle-latitude dry dynamics (dry QG)	


shortwave limit or f->0: tropical dynamics (Strict WTG) 	


ωtotal =ως +ωT +ωQ

2 Analytical analyses

From now on, we use the equations in p coordinate (see Appendix A) as following:
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ως +ωT ~ωQ

wavelength:   roughly between 700km and 2000km	

extratropics:   plenty of QG disturbances	

strong precip.: the convective heating is significant	
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This documents explain the code of solving QGw equation in MIT SCM and SAM.
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b. use a single column model 
or a cloud resolving model to 
simulation convection	


a. assume there is a characteristic length scale:	


c. prescribe QG forcing (Advζ, AdvT, Advq, …)	




the modeling framework:	


Convection 	
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Part I: a single-column modeling 
framework: interaction between LS and 
convection	

	

Part II: applications on the 2010 Pakistan 
extreme precipitation events	




Northrn Pakistan floods 
during monsoon seasons:	
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2010 Pakistan flood events:	

ERA-interim Precip.	
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Figure 6. Left column: the ECMWF analysis of the PV on 340 K (shaded, PVU) and the ECMWF prognostic precipitation (blue contours, 10 mm (6h)−1)
for (a) 1200 UTC 19 July, (c) 1200 UTC 20 July, (e) 0000 UTC 22 July 2010. Right column: the ECMWF analysis of the surface pressure (shaded, hPa)
and wind velocity at 925 hPa (black arrows, m s−1) and the prognostic evaporation (red lines, 2.5 mm (6h)−1) for (b) 1200 UTC 19 July, (d) 1200 UTC
20 July and (f) 0000 UTC 22 July. Note that both the surface pressure and the evaporation undergo a strong diurnal cycle and that not all panels show
the same time of the day.

troposphere increased from very low values on 18 July to
saturation up to almost 200 hPa on 22 July (not shown), and
CAPE values averaged over northeastern Pakistan dropped
to approximately 250 J kg−1 on 21 July. The high relative
humidity values in the free troposphere from 20 July onwards
are atypical for eastern Pakistan and a necessary condition
for the formation of convective storms of larger spatial
scale with stratiform characteristics (Houze et al., 2011). A
detailed discussion of the source of the mid-tropospheric
moisture is presented in section 7.

In summary, initially an upper-level anticyclonic flow
anomaly led to an intensification of the heat-low by clear
sky conditions and suppressed the release of convection
via the formation of a capping inversion. The heat-low
over central Pakistan intensified the transport of moist air
from the Arabian Sea into Pakistan. On 19 July the upper-
level anticyclonic anomaly weakened, moved westward and
convection set in over northwestern Pakistan.

On 21 July a breaking wave, i.e. a positive upper-level PV
anomaly, which had previously formed along the eastern

c⃝ 2012 Royal Meteorological Society Q. J. R. Meteorol. Soc. 139: 1780–1797 (2013)

large-scale conditions of the 2010 event	

PV on 340K	


Mar$us	  et al. 2013	


favorable conditions:	

	

upper-level PV intrusion	

monsoon depression	

moisture transport	

topographic wind 	

CAPE	

surface-moisture	

…	


Q: What causes the extreme precipitation?	
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3D QG-omega 
inversion:	
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topographic wind (lower b.c.):	
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2 Analytical analyses

From now on, we use the equations in p coordinate (see Appendix A) as following:
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Some useful derivations. Plug thermal dynamic equation back to replace Q, we have
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For now we only consider the boundary condition as w = 0 at bottom and top.
Given a horizontal wavenumber k, the above equation becomes
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Summery:	

	

Ø  convection + QG-omega in single column modeling	


	

Ø Using this modeling framework, we reproduces the 2010 

Pakistan flood events quite well.	

	
* the coupling between convection and large-scale 

dynamics is important. 	

	
* the topographic wind accounts for the triggering the 

extreme events in these event.	


Thank you.	



