Modeling interactions between the quasi-geostrophic vertical motion and convection in a single column

Ji Nie, Adam Sobel, and Daniel Shaevitz
Lamont-Doherty Earth Observatory,
Department of Applied Physics and Applied Mathematics, Columbia University

Part I: a single-column modeling framework: interaction between LS and convection

Part II: applications on the 2010 Pakistan extreme precipitation events

Introduction:

the idea of modeling tropical precipitation in a single column (Sobel and Bretherton 2000, Raymond and Zeng 2005, Kuang 2008, Romps 2012, ...)

$$
\begin{aligned}
\partial_{t} T & =A d v_{T}+\frac{\sigma p}{R} w+Q, \\
\partial_{t} q & =A d v_{q}-s_{q} w+Q_{q} .
\end{aligned} \quad \text { convective heating }
$$

Introduction:

the idea of modeling tropical precipitation in a single column (Sobel and Bretherton 2000, Raymond and Zeng 2005, Kuang 2008, Romps 2012, ...)

$$
\begin{aligned}
& \partial_{t} T=A d v_{T}+\frac{\sigma p}{R} w+Q, \\
& \partial_{t} q=A d v_{q}-s_{q} w+Q_{q} \cdot \\
& \quad \text { convective heating } \\
& \text { convive moistening }
\end{aligned}
$$

Q and whave to be solved simultaneously.
the weak temperature gradient (WTG, Sobel and Bretherton 2000):

$$
W_{w t g} \frac{\partial \bar{\theta}}{\partial z}=\frac{\bar{\theta}-\theta_{r e f}}{\tau}
$$

Introduction:

the idea of modeling tropical precipitation in a single column (Sobel and Bretherton 2000, Raymond and Zeng 2005, Kuang 2008, Romps 2012, ...)

Q and w have to be solved simultaneously.
the weak temperature gradient (WTG, Sobel and Bretherton 2000):

$$
W_{w t g} \frac{\partial \bar{\theta}}{\partial z}=\frac{\bar{\theta}-\theta_{r e f}}{\tau}
$$

Applications: convection responses to ENSO (e.g. Chiang and Sobel 2002); Seasonality (Gentine et a. 2015); QBO (Nie and Sobel 2015), ...

However, what about the extratropics?

$$
\begin{aligned}
& \partial_{t} T=A d v_{T}+\frac{\sigma p}{R} w+Q \\
& \partial_{t} q=A d v_{q}-s_{q} w+Q_{q} \\
& \quad \text { convective heating } \\
& \quad
\end{aligned}
$$

a closure (super-domain scale parameterization) that relate the largescale vertical motion with the states of the local column :
tropics:

WTG
extratropics:
?

$$
\begin{aligned}
& \partial_{t} T=A d v_{T}+\frac{\sigma p}{R} w+Q \\
& \partial_{t} q=A d v_{q}-s_{q} w+Q_{q} \\
& \quad \text { convective heating } \\
& \quad
\end{aligned}
$$

a closure (super-domain scale parameterization) that relate the largescale vertical motion with the states of the local column :
tropics:

WTG
extratropics:
QG-omega

quasi-geostrophic omega equation:

$\omega_{Q G}$

$$
\partial_{p p} w+\frac{\sigma}{f_{0}^{2}} \nabla^{2} w=-\frac{1}{f_{0}} \partial_{p}\left(A d v_{\zeta}\right)-\frac{R}{p f_{0}^{2}} \nabla^{2} A d v_{T}-\frac{R}{p f_{0}^{2}} \nabla^{2} Q,
$$

longwave limit: middle-latitude dry dynamics (dry QG)

$$
\omega_{\text {total }}=\omega_{S}+\omega_{T}+0_{Q}
$$

shortwave limit or f->0: tropical dynamics (Strict WTG)

$$
\omega_{t o t a l}=\omega_{5}+\omega_{T}+\omega_{Q}
$$

$$
\partial_{p p} w+\frac{\sigma}{f_{0}^{2}} \nabla^{2} w=-\frac{1}{f_{0}} \partial_{p}\left(A d v_{\zeta}\right)-\frac{R}{p f_{0}^{2}} \nabla^{2} A d v_{T}-\frac{R}{p f_{0}^{2}} \nabla^{2} Q
$$

$$
\omega_{5}+\omega_{T} \sim \omega_{Q}
$$

wavelength: roughly between 700 km and 2000 km extratropics: plenty of QG disturbances strong precip.: the convective heating is significant
the modeling framework: coupling the large-scale dynamics and convection with the QG-omega equation:

$$
\begin{array}{r}
\partial_{t} T=A d v_{T}+\frac{\sigma p}{R} w+Q \\
\partial_{t} q=A d v_{q}-s_{q} w+Q_{q}
\end{array}
$$

a. assume there is a characteristic length scale:

$$
\partial_{p p} w-\sigma\left(\frac{k}{f_{0}}\right)^{2} w=-\frac{1}{f_{0}} \partial_{p}\left(A d v_{\zeta}\right)+\frac{R}{p}\left(\frac{k}{f_{0}}\right)^{2} A d v_{T}+\frac{R}{p}\left(\frac{k}{f_{0}}\right)^{2} Q .
$$

the modeling framework: coupling the large-scale dynamics and convection with the QG-omega equation:

$$
\begin{array}{cl}
\partial_{t} T=A d v_{T}+\frac{\sigma p}{R} w+Q, \longrightarrow & \begin{array}{l}
\text { b. use a single column model } \\
\text { or a cloud resolving model to } \\
\text { simulation convection }
\end{array} \\
\partial_{t} q=A d v_{q}-s_{q} w+Q_{q} . \longrightarrow
\end{array}
$$

a. assume there is a characteristic length scale:

$$
\partial_{p p} w-\sigma\left(\frac{k}{f_{0}}\right)^{2} w=-\frac{1}{f_{0}} \partial_{p}\left(A d v_{\zeta}\right)+\frac{R}{p}\left(\frac{k}{f_{0}}\right)^{2} A d v_{T}+\frac{R}{p}\left(\frac{k}{f_{0}}\right)^{2} Q .
$$

the modeling framework: coupling the large-scale dynamics and convection with the QG-omega equation:

$$
\begin{array}{cl}
\partial_{t} T=A d v_{T}+\frac{\sigma p}{R} w+Q, \longrightarrow & \begin{array}{l}
\text { b. use a single column model } \\
\text { or a cloud resolving model to } \\
\text { simulation convection }
\end{array} \\
\partial_{t} q=A d v_{q}-s_{q} w+Q_{q} . \longrightarrow
\end{array}
$$

a. assume there is a characteristic length scale:

$$
\partial_{p p} w-\sigma\left(\frac{k}{f_{0}}\right)^{2} w=-\frac{1}{f_{0}} \partial_{p}\left(A d v_{\zeta}\right)+\frac{R}{p}\left(\frac{k}{f_{0}}\right)^{2} A d v_{T}+\frac{R}{p}\left(\frac{k}{f_{0}}\right)^{2} Q .
$$

c. prescribe QG forcing $\left(\operatorname{Adv}_{\zeta}, \operatorname{Adv}_{\mathrm{T}}, \operatorname{Adv}_{\mathrm{q}, \ldots}\right)$

the modeling framework:

Part I: a single-column modeling framework: interaction between LS and convection

Part II: applications on the 2010 Pakistan extreme precipitation events

Northrn Pakistan floods during monsoon seasons:

2003
2007
2010
2011
2012
2013
2014

Nie et al. 2010

prec.

2010 Pakistan flood events:

 ERA-interim Precip.
favorable conditions:

large-scale conditions of the 2010 event PV on 340K

Martius et al. 2013
Q: What causes the extreme precipitation?

Obs. $\quad \omega_{Q}>\omega_{\varsigma}+\omega_{T}$

Obs.
topographic wind (lower b.c.):

$$
\omega_{P B L} \approx V_{g, P B L} \bullet \nabla h_{0}=\omega_{\mathrm{topo}}
$$

Obs.

$$
\partial_{p p} w+\frac{\sigma}{f_{0}^{2}} \nabla^{2} w=-\frac{1}{f_{0}} \partial_{p}\left(A d v_{\zeta}\right)-\frac{R}{p f_{0}^{2}} \nabla^{2} A d v_{T}-\frac{R}{p f_{0}^{2}} \nabla^{2} Q,
$$

1D inversion

3D inversion

Model: $\mathrm{Adv}_{\zeta}+\mathrm{Adv}_{\mathrm{T}}+\mathrm{Adv}_{\mathrm{q}}+\omega_{0}$

Obs.

Model: $\mathrm{Adv}_{\zeta}+\mathrm{Adv}_{\mathrm{T}}+\mathrm{Adv}_{\mathrm{q}}+\omega_{0}$

ω (hPa/hr)

Prec

Prec

Prec

Prec

Summery:
$>$ convection + QG-omega in single column modeling
$>$ Using this modeling framework, we reproduces the 2010 Pakistan flood events quite well.

* the coupling between convection and large-scale dynamics is important.
* the topographic wind accounts for the triggering the extreme events in these event.

Thank you.

