Orbital to Millennial Scale Variability in the Southeast Asian Monsoon Since the Last Glacial Period

Kathleen Johnson,

Dept. of Earth System Science, UC Irvine

<u>Students:</u> Hongying Yang, Chris Wood, Jessica Wang <u>Collaborators:</u> Michael Griffiths, Gideon Henderson, Kei Yoshimura, Allegra LeGrande, Lica Ersek, Silvia Frisia, Andrea Borsato, Joyce White, Bounheuang Bouasisengpaseuth

The Southeast Asian Monsoon (SEAM)

- Analyses of instrumental data show pronounced spatial variability in regional precipitation patterns in the Asian monsoon region
 - Precipitation in the SEAM region shows more coherent variations.
 - SEAM precipitation is not strongly correlated with precipitation over East Asia, but shows a stronger correlation with India.
- The SEAM region sits in a key region, at the interface between the East Asian and Indian monsoon domains.
 - How does the SEAM vary on orbital and millennial timescales?

Study Site: Tham Mai Cave, Laos

•Tham Mai Cave (N20°45.24', E102°39.09'; elevation 360 m)

~80% of annual rainfall
occurs during summer
monsoon season (May to
September)

•Precipitation δ^{18} O exhibits a seasonal cycle similar to other Asian monsoon regions

•Most negative values during Aug-Sept.

Paleoclimate records from speleothems

- Growth layers can be precisely dated with U-Th method
 - The ratio of ${}^{18}O/{}^{16}O$ ($\delta^{18}O$) in local precipitation is sensitive to climate and is recorded in the speleothem CaCO₃

¹³C/¹²C (δ¹³C) and trace
element composition
(e.g. Mg/Ca) reflect
vegetation/soil
processes, water-rock
interaction, and
degassing history

Fairchild et al., 2006

Processes affecting speleothem $\delta^{\rm 18}{\rm O}$

$$\delta^{18} \mathsf{O} = \left\{ \frac{\left({^{18}}O/{^{16}}O \right)_{Sam} - \left({^{18}}O/{^{16}}O \right)_{Std.}}{\left({^{18}}O/{^{16}}O \right)_{Std.}} \right\} \times 10^3$$

•Assuming equilibrium deposition:

Isotope enabled GCM simulations can help investigate mechanisms

Orbital scale δ^{18} O changes in East Asian speleothems reflect monsoon intensity, but not local rainfall

LeGrande and Schmidt, 2009

East Asian-Indian monsoon variability since 250 ka

- Speleothem δ^{18} O in EAM region is best interpreted as a proxy for monsoon intensity, with negative values associated with enhanced southerly monsoon winds and increased rainfall in N. China. (Liu et al., 2014).
- A recent record from SW China (Xiaobailong Cave) is interpreted in terms of Indian Monsoon intensity

Mid-Holocene (6k) model results

- PMIP2/PMIP3 models show reduced summer precipitation in SEAM region
 - Insolation forced response differs from IM and EAM regions
 - What do isotope enabled models & proxy data show?

UV@COAT

Mid-Holocene (6k) model results

• GISS Model E2-R shows a negative $\delta^{18}O_p$ signal at 6 ka, despite modeled regional precipitation decrease.

6K-0K_H2O18_prec

Models suggest similar response to Heinrich events

• Precipitation δ^{18} O increases, but no significant change in precipitation amount.

Lewis et al., 2010

Pausata et al., 2011

Models suggest similar response to Heinrich events...and 8.2 ka event

- Precipitation δ^{18} O increases, but no significant change in precipitation amount.
- A recent proxy synthesis shows dry conditions across EAM region, but no data for SEAM region.

LeGrande et al., 2006; Morrill et al., 2013

Tham Mai Cave, Laos

- >2 km of cave passage with numerous actively growing stalagmites
- Ongoing monitoring work
 - Drip rate, drip water $\delta^{18}\text{O},$ trace elements (TEs) , and DIC $\delta^{13}\text{C}$ and ^{14}C
 - Precipitation amount and $\delta^{18}\text{O}$
 - Modern calcite (isotopes and TEs)
 - Cave air pCO₂
 - Soil and soil CO2 (TEs, δ^{13} C and 14 C)

Modern controls on precipitation $\delta^{\rm 18}{\rm O}$

Spatial correlations of modeled $\delta^{18}O_p$ (IsoGSM) and instrumental climate data

- Inter-annual $\delta^{18}O_p$ variability reflects ENSO/Walker circulation, convection over the Indo-Pacific warm pool, and Indian monsoon intensity.
- No significant correlation is seen between $\delta^{\rm 18}{\rm O_p}$ and local precipitation amount.

Speleothem samples and age models

•Actively forming when collected in 2013

•Average growth rate ≈ 20 μ m/year

•Microsampled at 500 μm resolution for stable isotope and trace element analysis

- •Previously broken stalagmite, collected in 2010
- •Average growth rate \approx 70 μ m/year
- •Microsampled at 500 µm resolution for stable isotope and trace element analysis

10 cm

Preliminary δ^{18} O record

Preliminary $\delta^{18}\text{O}$ record

•Tham Mai speleothem δ^{18} O looks very similar to other speleothem records from the broad Asian monsoon region and shows millennial scale shifts linked to high-latitude climate.

•What can other proxies (e.g. δ^{13} C, trace elements) tell us about SEAM rainfall?

Speleothem $\delta^{\rm 13}{\rm C}$ and trace element variations

$\delta^{13} C$

- Prior calcite precipitationSoil respiration
- •Closed vs. open system dissolution
- •C3:C4 vegetation

Trace elements (TE)

Elements controlled by D <<1:
Prior calcite precipitation
Calcite precipitation efficiency
Temperature (Mg/Ca)
Growth rate (Sr/Ca)

- •Oxygen isotopes are primarily useful for reconstructing synoptic to mesoscale climate whereas δ^{13} C and trace elements may primarily reflect local climate and hydrology.
- •Cave monitoring studies can help determine proxy controls & uncertainty.
- • δ^{13} C reflects multiple complex processes, but in general, higher δ^{13} C values reflect drier conditions.

Johnson et al., 2006; Fairchild et al., 2006; Tremaine et al., 2013; Oster et al., 2012, etc.

Preliminary $\delta^{\rm 13}{\rm C}$ record

- TM-17 δ^{13} C may reflect local water balance
- Suggests dry conditions in Laos during Heinrich Events
 - HS1 is driest period of last 30 kyr
- Interestingly, shows no change during Younger Dryas and suggests wet conditions during 8.2 ka event
- δ¹³C suggests that early to mid Holocene was dry and that wettest conditions in Holocene occurred ~4 ka, then decreased slightly towards present.
 - Consistent with 6 ka models and Borneo δ^{18} O record (Partin et al., 2007; Carolin et al., 2013)
- Anti-phase precipitation response to Heinrich events is evident through comparison with Flores record (Griffiths et al., 2009; Ayliffe et al., 2013), but Y. Dryas, 8.2 event, and Holocene trend are more complicated.

Conclusions

- Models suggest that SEAM precipitation during the Mid-Holocene decreased relative to modern, while $\delta^{18}O_p$ also decreased, reflecting strong AM and increased "pre-fractionation" upstream.
 - New speleothem δ^{18} O records from Tham Mai cave, Laos are broadly similar to other AM records on orbital to millennial timescales.
 - New speleothem δ^{13} C records suggest that the mid-Holocene was dry, and that precipitation increased towards maximum value ~4 ka.
- Models suggest that SEAM precipitation δ^{18} O should increase in response to Heinrich events and the 8.2 ka event.
 - New speleothem δ^{18} O records support this.
 - New speleothem δ^{13} C records indicate decreased precipitation in Laos during Heinrich events, no change during the Younger Dryas, and increased precipitation during the 8.2 ka event.
- Future work will focus on trace element analysis to provide additional information on local SEAM water balance.

Thank you! Any questions?