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ITCZ Energetic Framework

Energetic perspective: ITCZ in hemisphere exporting energy
Kang et al. (2009)

Recipe:

1) Tak - forcing/feedbacl

) Take annual-mean forcing/feedback
» 2) Diffuse energy in atmos to

T E%E l m determine annual-mean Ocirculation
southward 3) Compute annual-mean change in
EQ 30N np water vapor flux to determine P shift
Hwang et al. (201 3) Frierson & Hwang (2012),

Hwang et al. (201 3),
Bischoff & Schneider (2014)
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Energetic perspective: ITCZ in hemisphere exporting energy
Kang et al. (2009)

Recipe:

1) Tak I- forcing/feedbacl

) Take annual-mean forcing/feedback
. 2) Diffuse energy in atmosphere to

T E%E l m determine annual-mean Ocirculation
southward 3) Compute annual-mean change in
EQ 30N NP water vapor flux to determine P shift
Hwang et al. (201 3) Frierson & Hwang (2012),

Hwang et al. (2013),

Bischoff & Schneider (2014)
Should we worry about the often unstated ‘annual-means’?
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Sulfate Aerosol Forcing

...in an aquaplanet GCM! Merlis et al. (201 3a)

Adjusted TOA Radiative Forcing
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“Continental’: 5m slab ocean infinite reservoir for
“Oceanic’’: 20m slab ocean evaporation



“Oceanic” Precipitation
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Southward shift throughout seasonal cycle
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‘Dynamic’ P-E change
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correlated with climatological time of high humidity.



‘Dynamic’ P-E change
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This is a rectification mechanism similar in spirit to
‘thermodynamic’ precession mechanism: Merlis et al. (2013¢)



‘Dynamic’ P-E change
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~40% underestimate of annual-mean change



‘Dynamic’ P-E change

"Oceanic"
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Neglecting seasonality minimally underestimates
annual-mean P-E change in “oceanic” regime



Seasonality of Earth’s humidity

Magnitude of seasonal cycle relative to annual mean:

q(t) ~ [g] + ¢’ cos(2mt yr™" + ¢)
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Seasonality of Earth’s humidity

If circulation change has a ow' ¢

N, —

similar magnitude seasonality: §{w] [¢]
60%

J Iso% ~)5%

140%

Error
80% ~50%

70%

o

40
304
20

=)

Latitude
|
S o O

| L | {30%
_00- l y ’ L | {20% ~5%

110%

0%

0 180 O ERA Interim
Longitude



® We cannot straightforwardly apply the

energetic ITCZ framework to monsoons.
Seasonality is important for precip response to sulfate

aerosol forcing in “continental” regime

N.B. Energetics of seasonal circulation changes
is a useful perspective, though energy storage

Is iImportant: Chou & Neelin (2003), Merlis et al.
(2013b), Chamales et al. (2015)

‘Recipe’ TBD...



Direct vs. Temperature Mediated Climate Changes

Many climate changes are proportional to
the amount of global warming:
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Direct vs. Temperature Mediated Climate Changes

But radiative forcing agents can also
directly change aspects of climate:

dX 90X AT
dCOs ~ {Ts) dCOy




Tropical precipitation change
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Increased CO; “directly” weakens tropical
circulations.



Circulation changes in fixed-SST simulations

Change in circulation strength

® Fixed-SST aGCM circulations
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fractional change in hurricane count

Global hurricane (TC) frequency response
from direct GHG circulation change
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Direct GHG change in hurricane frequency is
robust and ~50% of the total change.



Moist energetics of direct response
of tropical circulations to CO;

Analysis of moist static energy:

® Allows the circulation to be related to the energy

sources & sinks (e.g., radiation) without explicit
consideration of latent heating.

® Efficiency of circulation energy transport (gross
moist stability) may change.

Held & Hou (1980), Neelin & Held (1987),
Held (2001), Merlis et al. (2013a,b)
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Quiz!

What is the radiative forcing of doubling CO»!?



Moist energetics of direct response
of tropical circulations to CO;

Analysis of moist static energy:

® Allows the circulation to be related to the energy

sources & sinks (e.g., radiation) without explicit
consideration of latent heating.

® Efficiency of circulation energy transport (gross
moist stability) may change.

Held & Hou (1980), Neelin & Held (1987),
Held (2001), Merlis et al. (2013a,b)

Conclusion from moist energetics:

The spatial structure of CO; radiative forcing (often ignored)
leads to direct weakening of tropical circulations.



Spatial structure of CO; radiative forcing
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The climatological cloud distribution masks the
COs radiative forcing in regions of mean ascent.



Sketch of cloud masking of CO; radiative forcing
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Surface radiation & fluxes also affect circulation energetics.



Sketch of cloud masking of CO; radiative forcing
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Sketch of cloud masking of CO; radiative forcing
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Forcing gradient also acts to oppose Walker circulation.



GFDLs AM2.1 direct circulation response to 4XCO;

Masking of forcing deactivated =——————p-
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GFDLs AM2.1 direct circulation response to 4XCO;
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Direct CO; weakening of tropical circulations decreases as
masking is deactivated!



|dealized Models
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| 1 1 ] | |
02 N\ -I5

/) \ \
o i n
& T
© -1 0
£
k=
? 08 5
' "% 10°
-40 -30 -20 -10 0 10 20 30 40 (kg s

Latitude

GCM from Merlis et al. (201 3)

0.1 1

vor10xdv(m s'1)
|
o
— o

RCE Pot. Temperature Change

M

No cloud
Tropical cloud

Single-layer Model

- N -
\——__/

\
— — —10xdv

-0.2 —_—
SI_M from ~40 -30 =20 -10 0 10 20 30 40

Latitude

Sobel & Schneider (2009)

~2% direct weakening across model hierarchy
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