

The Seasonal Dynamics of Iron Supply, Biological Consumption & Cycling in the Southern Ocean

Philip Boyd

translating **nature** into **knowledge**

Rationale

Iron plays a pivotal role in setting S. Ocean productivity and driving C and nutrient biogeochemistry

Iron datasets are sparse, and it is problematic to add iron sensors to gliders or bio-floats

Approaches & Collaborators

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 117, C06009, doi:10.1029/2011JC007726, 2012

Mapping phytoplankton iron utilization: Insights into Southern Ocean supply mechanisms

P. W. Boyd,^{1,2} K. R. Arrigo,³ R. Strzepek,⁴ and G. L. van Dijken³

geoscience

ARTICLES PUBLISHED ONLINE: XX MONTH XXXX | DOI: 10.1038/NGE02101

Surface water iron supplies in the Southern Ocean sustained by deep winter mixing

Alessandro Tagliabue^{1,2*}, Jean-Baptiste Sallée^{3,4,5}, Andrew R. Bowie⁶, Marina Lévy^{3,4}, Sebastiaan Swart^{2,7} and Philip W. Boyd^{8,9}

Phytoplankton stocks - a variegated Southern Ocean

Courtesy NASA

Phytoplankton stocks - a variegated Southern Ocean

Iron Supply Mechanisms

Courtesy NASA

Boyd & Ellwood (2010) Nature Geoscience

- Iron is the main driver of S. Ocean primary production
- It is supplied by multiple mechanisms (that likely vary interannually)
- Remotely-sensed primary production is largely invariant.

Arrigo et al. 2008. The above trend (+/-11%) has also been observed from 2006 to 2013 (K. Arrigo, pers. comm.)

Iron sources - Approaches

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 117, C06009, doi:10.1029/2011JC007726, 2012

Mapping phytoplankton iron utilization: Insights into Southern Ocean supply mechanisms

P. W. Boyd,^{1,2} K. R. Arrigo,³ R. Strzepek,⁴ and G. L. van Dijken³

Back out iron supply rates for specific mechanisms – such as dust

Phytoplankton iron utilisation map (µmol Fe m⁻² a⁻¹)

Boyd et al. (2012) The circumpolar iron utilisation map is 'subsampled' based on knowledge of the geographical bounds on iron source mechanisms

3 major dust supply regions

Boyd et al. (2012)

Iron utilisation maps for regions where iron is supplied from re-suspended sediments or sea-ice retreat

< 1000 m depth mask

Seasonal sea-ice retreat

Boyd et al. (2012)

Converting maps to iron utilisation rates

Aerosol iron

Sea-ice melt Fe 'satellite templates'

Teasing apart new from regenerated iron using the fe ratio

Time-series of the *fe* ratio in a Quasi-lagrangian **GEOTRACES** process study

X

00

Инс

Fe

fe ratios reported in other studies Boyd et al. (2003) HNLC subantarctic 0.1-0.15 Sarthou et al. (2008) High Fe S. Ocean ~0.5

Surface water iron supplies in the Southern Ocean sustained by deep winter mixing

Alessandro Tagliabue^{1,2*}, Jean-Baptiste Sallée^{3,4,5}, Andrew R. Bowie⁶, Marina Lévy^{3,4}, Sebastiaan Swart^{2,7} and Philip W. Boyd^{8,9}

Combines a decade of ARGO float data (mixed layer depth), IPY-GEOTRACES profiles of dissolved iron (ferricline) and GEOTRACES process studies (iron recycling) to assess basin scale iron supply – upwelling, entrainment, diffusion

Iron sources - Approaches

Tagliabue et al. (2014) found that the ferricline was consistently deeper than the seasonal mixed layer depth – implications for vertical iron supply

"That Z_{Fe} is almost always much deeper than the concomitant MLD indicates limited input of DFe from diapycnal diffusion due to weak $\delta Fe/\delta z_{MLD}$ "

(surface-density difference criterion of 0.03kg m⁻³)

Circumpolar maps of iron supply from GEOTRACES IPY sections

Diapycnal diffusion Fe flux across the mixed layer

Entrainment flux of Fe

Ekman Fe term (+ upwelling/ - downwelling)

Tagliabue et al. (2014)

Mean

median

Iron supply µmol m⁻² a⁻¹

Month

Boyd (unpublished)

Not included, eddy transport, hydrothermal vents, bottom pressure torque, island wake

S. Ocean interannual variability– such as SAM – will likely influence the magnitude of each of these iron supply mechanisms, but productivity is invariant

Growth

Does the spatial and temporal overlap of different Fe supply mechanisms act as a buffer for productivity?

Region	Bathymetry & dust maps (km ²)	
	< 1000 m depth	> 1000 m depth
Patagonia	360183	1271606
S. Africa	2543	2224634
Australia	285	2256366

Boyd et al. (2012)

Is there a divide between low & high iron waters that variability cannot influence?

Summary

Regional Fe inputs from other mechanisms

A changing climate will alter some iron supply mechanisms – dust versus Hydrothermal vents – more than others.

Will it significantly alter the variegated chlorophyll patterns in the S. Ocean?