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Observed Southern Ocean Trends
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Coupled climate models,
Abrupt quadrupling of CO2

Response to abrupt GHG forcing
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Planet warms, but not uniformly Previous studies have attribute delayed warming to

- anomalous freshwater fluxes
- local storage of heat in ocean
- changes in winds

Delayed SO warming

Offer a different explanation
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s Abrupt warming expt with an ocean model

Take an ocean model run under CORE-1 protocol, run out to equilibrium.

‘Step’ warming experiment:
= Abrupt, spatially uniform surface forcing of F =4 W/m?
= Spatially-invariant climate feedback of 1 = IWm=2 K™

”1] 4 IIQF

MITgcm
Note:
Only surface heat fluxes are perturbed
No change in winds or E-P See Marshall et al, 2014: Climate Dynamics

for more details
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Spatial pattern of warming

Temperature change (°C) after 100 years
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Ozone Hole Response Function

Peak depletion at
Oct/Nov transition
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‘Step’ with a seasonal cycle
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No ozone
depletion

Effect of ozone hole at the surface is mechanical — wind (SAM) change
Expect a seasonal, SAM-like response to ozone depletion

Maximum SAM response in DJF (summertime)

How will SST, sea-ice and interior ocean respond?
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Mechanisms

SST regressed on to SAM, zero lag
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Mechanisms
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Mechanisms

SST regressed on to SAM, zero lag SAM wind-stress
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Mechanisms

SAM wind-stress
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Convolutions with GHG and Ozone Hole forcing
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Natural Variability (in CMIP5 controls)

Natural variations in surface winds (SAM) 30-yr sea-surface temperature trend
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Composite of 30 year SST trends congruent with large 30 year trends in
surface winds (internal variability in SAM), normalized to observed wind
trend over last 30 years.

Kostov et al, in prep
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Several factors likely set Southern Ocean warming/cooling
patterns:

* Climatological northward transport damps warming
south of the ACC —
e Subduction within mode water formation regions
enhances warming on the northern flank of the ACC
* Wind-driven changes, due to ozone depletion or natural
variability




Linking Glacial-Interglacial cycles to multiple equilibria of climate

Previous work:

In Fesredra & al. (2011), we show the axistance
of muitipie equilibnum states of the cimate
systam In a complex coupled acean-
amosphere-s=a lce Ganeral Circulalon
Madel. In two ldealized geometries, two
mifferent stable states are found for exactly the
53Me 2t of parameters and extemal farngs:
3 coid 5tate In which a polar 523 loe can
ExiEnds Into the miglatiudes and 3 warm
state, which s lcs free (2 third, completely s2a
ke coverad, "snowbal” state 15 als0 possibie).
RidgeWorid

p Ar—

=,

Agquaplanet

Mechanism:

The muitiple equillbdna ewe thelr existence toa the
presence of merkdlonal structure In oo2an heat
transport (OHT ) namely, a lange heat transport
out of tha opics and 3 relatvaly weak high-
lattude tral The assoclated large
midiatfwde convergence of OHT leads iva
prefermed (atiude at which the sea loe edge can
rest [see also Rose and Marshall, 2005).

David Femreira and John Marshall
MIT, Cambridge, USA (e-mai: dign@ocean mitegy)

This study: Muttipls squilibium states with complas geemstry

We repost ihat maitipie states of the dlimate system £an exist In a gaometry with 1) a North-
Sputh asymmetry (3 blockad norhem acean and a zonally r2-enrant S0UMEM ogean) and 2)
a zonal asymmetry (45° wide continents separating a large and a small basin).

“Glaclal

The climats changs betwaen the two states Is of planatary scale:
=Z0bal S5T and SAT secrease by 6.7 ° Cand 125 ° C, respectively,

«he SH 523 lce expands by 207 of Iatfude and the NH $e3 loe £3D grows 10 ~55° N,
-the atmaspharic CO; level drops by 113 ppen {from 258 to 150 pam) In the colder climate
{E2E bottom et box).

The Eanth-like continental distribution aliows for a direct com, n Wit palan cbeervations.
In fact, the two States can b2 Mought of 35 analogs of Interglacial and Glacial (Last Glacal
Maximum, LGM) cimates.

How Iz carbon stored In the “Glacial” ocaan?

The dynamical model is ovenald with an oeaan
camon-cycle model coupled to 3 wellmixed CO,
aimuspheric box. The Invantory of carbon,
akalinity, and phosphats Is identical 1 tha two
EOMNANS. NOE that the atmosphenc OO, s nat
GVl actve.

The enange ["Glacial™ minus “Intergiasial) in
OCean carbon can be Ep“ Into Mres resenvors:

“intergiacial | gforage in the
“Glacial” state s
due bo ak-sea
desaguilibrium.
Increased sea-oe
COVET reduses the
wentilation of
upwelad deep
walers: DIC
accwmulates In the:
deep ocean (a

MCC [Sv) and PO4 {mol'm™) Fig. 5  Vhastern Adands GEOSECS §°C (PCA]

A1S®  soumward shitft of the

“Glacial match well site of deep water formation [
thase Inferred from (Toliowing the migration of the | -
4"C measurements Ice: margin) In the “Glacial -
state -
(Figs. 4 & 51 = ;
A weaker and
Astronger inflow swallowear
of botiom water “HADWT cell
Trom the Southem
Oceaan
The AAEW-Ike =
waters are nutrent Surfacs winds sfresa: SH Westerly winds sirzngtnen and
ich while the upger Shift poieward In the *Intergiacsal” climate, hence 3 slighty
ocean ls strongly stronger SO upweling
nutrent-depleted (comiribatingtoa = 0 0 g “Interglacial”

miore nortfward o=y
OHT near 40° 5, I

Ty e -
sea Fig7.top). B relact

£ . y

= In e SH. Me growin and equatorward export of 5ea lce ,o.“”"} '\.,/.\-’J %:/
In the "Giaclar cimate become large enough to drive, o b
through brine rejestion, a large Increase of AABW-Ike .
boftom water formation (Fig. O): botiom waters of the
Southern Dc2an are colier [Naar fT2ezing) and salter
(#1 psu), closedy reproducing estimations Tor the LGM
(Adkins et . 2002).

= Inthe NH, the primary effec! of s2a ke extension Is to
cap off bucyancy loss over polar water (malnly through
reduced latent heat): deep water formation Is moved to
e lce margin near 55° M.

Global MOC and Temperature

Energy transporta:

*The Smal-oasin OHT uniformiy decreases by ~0.4 PW In e “Glaclal®
climats. In the subFopics, this effect IS [argaly compEnsated by an Increasa of
ihe Lamge-basin OHT due toa sirengmening of the rade winds (FIg. 5).

~The global OHT shows a complex pattem of strengthening and weakening.
*In the atmosphere, compensating decreasainerease In latenteansible
heat iransports are s2en In e "Glacial” cimate. The @tent efect
dominates In the SH, but not In the MH. This suggests strang (non-linaar)
affects of the sea edge on the strengih and location of mid-atiudes siom-
tracks {and Westerly winds).

Ocean Heat Tranaport

~—= “interglaclal"
l A\,
/
. NS
Eo—
- ~a .

Glaclal Small Basin
- - [] - - - -
y Large Basin

~cissar | :\\_}i

FECE)

\ )
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Flg 7
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[ summary- Our simulatians show that muripl2 equIlbrum States of e coupied Cimate System can exist In an Earri-lIke geometry wiih
zonal and meridional asymmetries: (a1 least) wo siates are possible — 3 Wamminterglacial state and a Coid/Glaclal siate The fao
climate siates show many similarities wkh the cimate of ihe LEM and our present Holoozne cimate.

Discussion: OUT results suggest that Glacial-Intergiacial cycles may be related to the existencs of multipie statss In Earth climate. One
can specuiate that MEankovitch cycies (and pessioly CO, f2edbacks) provide the mogulation for riggenng system transitions besween
states. In this ramework, 1t Is Noteworiny that two weaknessas of e Milankowich hypoinesls could be adaressed:

+The weakness af the asironomical forcing reiEtive 1o the magnitade of e cmate response; N 3 sys1em with an nysieresis, small
foreings can result In largs responses. The forcing ks “only” required to drive the sysizm for one potential well to the ofer.

-A StAighttorward riatonship between cimate and astanomical forcing i nof observed (sae &.g. YIn and Berger, 2010 Phasing

bebaween farcing and response are disturbed by citical threshioids and Intemally-set relaxation ime-soales to the equilibnum states

o




Impact of the Ozone Hole on SH Climate

tropopause

atmosphere height

ocean depth

Courtesy of
Darryn Waugh

90°S 60°S 30°S



Mechanisms underlying observed trends
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