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Collaborators: 
     Kyle Armour 
     Cecelia Bitz 
     Ute Hausmann 
     Yavor Kostov 
     Alan Plumb 
     Jeff Scott 
     Susan Solomon 
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Planet warms, but not uniformly 

Coupled climate models, 
Abrupt quadrupling of CO2 

Delayed SO warming 

Previous studies have attribute delayed warming to 
     - anomalous freshwater fluxes 
     - local storage of heat in ocean 
     - changes in winds 

Offer a different explanation  
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See Marshall et al, 2014: Climate Dynamics 
                                                    for more details 
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Ozone Hole Response Function 

‘Step’ with a seasonal cycle 

Expect a seasonal, SAM-like response to ozone depletion 

Maximum SAM response in DJF (summertime) 

Peak depletion at 
Oct/Nov transition 

How will SST, sea-ice and interior ocean respond? 

Effect of ozone hole at the surface is mechanical – wind (SAM) change 
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See Sigmond and Fyfe, 2010,  
Bitz and Polvani, 2012, 

Smith et al (2012) 
Ferreira et al, 2015 

for discussions 
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Natural variability (in CMIP5 controls) 

Composite of 30 year SST trends congruent with large 30 year trends in 
surface winds (internal variability in SAM), normalized to observed wind 
trend over last 30 years. 

Kostov et al, in prep 
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• Wind-driven changes, due to ozone depletion or natural 
variability  
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Impact of the Ozone Hole on SH Climate 

Courtesy of 
Darryn Waugh 
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Mechanisms underlying observed trends 

Eq 

Anthropogenic temperature 


