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Image from Morrison et al., 2015: "Upwelling in the Southern Ocean." Phys. Today.
» “Wind-driven” Antarctic Circumpolar Current (ACC)
» Upper & lower overturning cells
» Buoyancy fluxes also drive circulation




Southern connections to global overturning
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Image thanks to R. Marsh, NOC.

» Upper (NADW) cell — partly wind-driven?
» Lower (AABW) cell — balance between interior mixing
and southern buoyancy fluxes

Today'’s talk: Review how (and why) the upper & lower

cells are likely to change with variations in forcing — both
wind stress and surface buoyancy flux.




The Upper Cell: The Basics
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(i) Theory: Residual Mean Overtunning m the

Southern Ocean
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Marshall & Radko, JPO (2003)

» Can divide flow into a mean, eddy and residual
overturning.

» Eddy overturning “opposes” the mean

Insensitivity of upper MOC Insensitivity of ACC to wind
cell to wind stress forcing: stress forcing:

» Eddy compensation » Eddy saturation




A “simple” model to explore MOC dynamics
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Eddies modify both the meridional transport and the form

stress terms.

If you want to follow the maths, read Killworth & Nanneh, JPO (1994). See also Howard et al., JPO (2014)
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(i) Theory




(ii) Observations: Sensitivity of Eddies

Satellite observations now confirm that eddy KE has
increasing with the wind.
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) Models: Sensitivity of MOC to Eddies
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(iii) Models
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Coarse-resolution models have weak compensation,
unless GM coefficient is variable (e.g. Gent & Danabasoglu, J. Climate, 2011)
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(iv) Complications: Sensitivity to Buoyancy o
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(iv) Complications
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e.g. Speer et al., JPO (2000)
We have known for sometime that buoyancy gain is an
important aspect of the Southern overturning . . . in fact,
overturning can be diagnosed from buoyancy fluxes
(Badin et al., JPO, 2013)
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[Equivalently, the overturning response to wind depends

upon surface BC (Abernathey et al., JPO, 2011)]
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(iv) Complications: What is an eddy? Overtunning m the

Southern Ocean

Andy Hogg

32
33
> 34
35

36

37

SAMO5+++
potential density o, (kg m™)

Dufour et al., J. Climate (2012)

» Standing eddies can actually explain a significant
component of the overturning circulation.

» Standing eddies may also control the location of heat
fluxes (Abernathey & Cessi, JPO, 2014)

» Standing meander response to forcing is also
important (Thompson & Naveira Garabato, JPO,
2014)




(iv) Complications: Three-dimensionality Overtunning m the
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(iv) Complications
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» ACC is non-zonal

» No guarantee that a 2D representation of overturning
is relevant to transport of tracers!
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What sets the strength of the lower cell?

» Available Potential Energy input from surface
buoyancy fluxes (Hughes et al., JPO, 2006)
Entrainment of the descending plume (Hughes &
Griffiths, Ocean Mod., 2006)

Interior mixing ... (Nikurashin & Ferrari, GRL, 2013)
...as well as lateral eddy fluxes (lto & Marshall, JPO,
2008)

All of the above?
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(i) Observations: Warming & Freshening S
' Southern Ocean
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(ii) Observations
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(iv) Complications

» |t is very likely that surface freshening/warming will
reduce AABW formation, but is it also sensitive to
changes in wind stress?

» Can or should changes in lower cell be offset by
changes in the upper cell?

» Can we estimate current buoyancy fluxes close to
the Antarctic coast? (see Tamura et al., GRL 2008)

» The lower cell is potentially more important to the
carbon cycle than the upper cell, but can we even
estimate the carbon uptake in these regions?

» How can we model all the processes involved in
bottom water formation?
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Conclusions

Upper Cell
» Upwelling in the Southern Ocean is predominantly
driven by wind;
» Changes in wind stress may be partially
compensated by eddies;
> Net overturning may be more sensitive to buoyancy
changes than wind.
Lower Cell
»\ Driven by surface buoyancy. fluxes, but many
processes are-involved.
» Poorly modelled, poorly observed.
» Contribution to carbon cycle remains uncertain.
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