A nitrogen isotope-assisted view of Southern Ocean nutrient cycling

Daniel Sigman

Dept. of Geosciences

Princeton University

Patrick Rafter

Sarah Fawcett

Dario Marconi

Southern Ocean: leak in the biological pump

Southern Ocean meridional circulation

N and O isotopes

N: ¹⁴N 99.6337% ¹⁵N 0.3663%

 $O: \ ^{16}O \ 99.7630\% \ \ ^{17}O \ 0.0375\% \ \ ^{18}O \ 0.1995\%$

$$\delta^{15}N$$
 (vs. atm. N_2) = $(((^{15}N/^{14}N)/(^{15}N/^{14}N)_{air}) - 1)*1000%$

$$\delta^{18}$$
O (vs. VSMOW) = $((180/160)/(180/160)_{VSMOW}) - 1)*1000%$

$$NO_3^-:$$
 V_{N+}^+
 V_{N+}^+
 V_{N+}^+
 V_{N+}^+
 V_{N+}^+
 $V_{N+}^ V_{N+}^ V_{N+}^-$

Kinetic isotope fractionation

Nitrate assimilation:

$${}^{14}NO_{3}^{-} \stackrel{^{14}k}{\Rightarrow} {}^{14}N_{org}$$

$${}^{15}NO_{3}^{-} \stackrel{^{15}k}{\Rightarrow} {}^{15}N_{org}$$

$${}^{15}\epsilon = (({}^{14}k/{}^{15}k) - 1)*1000\%$$

$$N^{16}O_3^{-16k} \rightarrow N_{org}$$
 $N^{18}O^{16}O_2^{-18k} \rightarrow N_{org}$
 $N^{18}\epsilon = ((^{16}k/^{18}k) - 1)*1000\%$

$$^{15}\epsilon \sim \delta^{15} N_{NO3-} - \delta^{15} N_{NO3- consumed (inst.)}$$
 $^{18}\epsilon \sim \delta^{18} O_{NO3-} - \delta^{18} O_{NO3- consumed (inst.)}$

Nitrate N and O isotopic effects of N cycle processes

Southern Ocean nitrate isotopes – Atlantic sector, winter

Smart et al., in review

South Pacific nitrate N and O isotopes

CLIVAR P16S, 151°W, January-February 2005

