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4||m|’ Multi-year variability: Outline and Conclusions

CSIRO

Discuss three different Southern Ocean mechanisms that
generate multi-year variability

Conclusions

= Mechanisms of multi-year variability to underpin decadal
forecasting systems, which are linked to the SO dynamics

= the variability affects the thermocline, sea-ice and
subduction of mode water

= Potential impacts on BGC cycling and anthropogenic carbon
subduction

= Weather is important to coupling of the atmosphere with the
ocean, which amplifies the Southern Ocean multi-year
variability



‘lmu’ MIPS multi-model sea surface height variability:
Where is the memory of the climate system?
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Latitude

Latitude

10-25 years

Variability on short time scales (less than 5 years) mostly in the tropical
Pacific (reflects ENSO variability) —> Seasonal forecasting focused on
growth of ENSO regimes

Beyond a few years, the tropical Pacific (ENSO) is not driving variability
-> Need to examine extra-tropical ocean variability - in particular, the
Southern Ocean
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INTRINSIC SOUTHERN OCEAN
VARIABILITY

1. Baroclinic disturbances generated in thermocline of the ACC

Southern Ocean to Lower Latitude connections

2. Baroclinic disturbances in the thermocline propagating along
density fronts

3. Spicy anomalies associated with subtropical mode water
subduction propagate in the thermocline and connect the
Southern Ocean to tropical Pacific



‘llml’ Southern Ocean Intrinsic Variability: baroclinic waves in the
thermocline

CSIRO

CORE2 - Interannual forcing CORE1 - seasonal climatology
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Wave-like features appears in the transfer of energy to and from the
mean to transient flow

Like a Rossby wave it wants to propagate to the west but it is

transport east with the ACC O’Kane et al., 2013



Southern Ocean Intrinsic Variability: baroclinic wave’s
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depth structure at 58°S
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‘lmu’ Southern Ocean Intrinsic Variability: EOF analysis of the
Temperature variability at 200m (CORE1)

CORE1 EOF1
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CORE1 - intrinsic mode
of variability with a
period of 20 years
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‘mm’ Interannual Temperature variability at 200m:
Importance of weather

CORE1: Seasonal Climatology Weather
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The inclusion of weather substantial increases
temperature variability in the thermocline

Matear et al., in prep.



Interannual Temperature variability at

200m: Change in character

Increase in Atlantic variability _
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Change in the Character of the weather is associated with a
change in the magnitude and structure of temperature
variability in the thermocline

e.g. increase in Atlantic variability

Matear et al., in prep.



‘ ’ Sea-ice Concentration interannual variability:
)48 Importance of weather
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Sea-ice Duration trend (1990-2007): Importance

of weather

a

b) Observed q°

Weather also
produces multi-year
trends in sea-ice
duration

R

Duration Trend (days/year) Matear et aI., in review NComm.



‘mm’ Subduction of Anthropogenic Carbon:

obsevational analysis
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Subduction and
reventilation “hot spots”
located near the initial
growth of the instability
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‘lmu’ Southern Ocean Intrinsic and Forced Variability
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‘llml’ Southern Ocean to subtropics: “Ocean Storm Tracks”
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Eady Growth Rate:

Maps the waveguides along which baroclinic waves
can propagate

O’Kane et al., 2014



‘mm’ Southern Ocean to subtropics: “Ocean Storm Tracks”
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Pacific Storm Track which are baroclinic waves
propagating in the thermocline — expression in
surface temperature
O’Kane et al., 2014



Pacific Baroclinic Waves: multi-scale with different
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propagation speeds
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‘lmu’ Subtropical Response: evidence of a regime change
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Maria Island SST variability:

Recent decades show a modest warming trend with a more
unstable Tasman Sea thermocline — more variability and more

eddies Maria Island timeseries (4 year running mean)
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4||m|’ Multi-year variability: Conclusions
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Southern Ocean mechanisms that generate multi-year
variability that could influence the climate globally

= baroclinic disturbances generated in the Antarctic Circumpolar
Current — importance of weather

= baroclinic disturbances generated at the subtropical boundary

= spicy anomalies associated with subtropical mode water
subduction

Conclusions

= These mechanisms could underpin decadal forecasting
systems, have potential impacts on BGC cycling and
anthropogenic carbon subduction

= Weather is important to the atmosphere-ocean coupling, which
amplifies the Southern Ocean multi-year variability
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